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Abstract

We study symmetry method to solve difference equation (18) in [3],

un+2(i+1) =
un

a+ bun+i+1un
,

by determining Lie groups of symmetries for even i. We find the forbidden set after we
get an exact solution. We study also the local stability of the equilibrium point of this
difference equation.
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INTRODUCTION

In the past thirty years, various types of difference equations have been considered and
examined. These types of equations are of great importance in various fields of applied
sciences. Deriving of the forbidden sets of the difference equations is a very important
tool in studying the behaviour of the solutions of these difference equations.

Balbirea and Cascales [3] gave an explicit understanding of the forbidden sets by
reviewing some of the previous studies. They proposed a list of open problems concern-
ing this field.

Rabago [11] solved open problem 3, Eq. 17 in [3]. He found the forbidden set of the
difference equation

un+k+1 =
un+kun

aun+1 + un+kun+1un

Abo-zeid [1] gave an exact solution of the difference equations

un+3 =
un+2un

aun+2 + bun
,

un+3 =
un+1un

aun+1 + bun

and then he determined the forbidden sets of them.
In this work, we are interested in finding a closed form solution of a certain class

of difference equations using the method of symmetry. To be more precise, we are
interested in addressing the solution to one of the open problems posted by Balibrea
and Cascales in ([3], Open Problem 3, Eq. 18) concerning the forbidden set of a certain
class of rational difference equations. Forbidden set is the set of initial conditions for
which after a finite number of iterates we reach a value outside the domain of definition
of the iteration function.

The first using of symmetry method was by Sophus Lie in order to solve ordinary
differential equations (ODEs). For an introduction to symmetry methods for ODEs,
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see Hydon (2000). After that the method of symmetry was developed to solve ordinary
difference equations by many researchers. Hydon (2000) introduced a method for ob-
taining the Lie symmetries and used it to reduce the order of the ordinary difference
equations and to find the solution.

In this thesis, we devise topics as follows:

In chapter 1, we introduce what do we mean about forbidden set concerning differ-
ence equations, and mention as an example recent results of determining the forbidden
sets for some difference equations.

In chapter 2, we investigate symmetries for first and second order difference equa-
tions, and we show how can we use symmetry to solve these equations. We generalize
the symmetry method for higher order difference equations.

In chapter 3 and the aim of this thesis, we use symmetry method to solve difference
equation

un+2(i+1) =
un

a+ bun+i+1un
,

for even i, with real initial conditions {un}2i+1
n=0 . We shall determine the forbidden set

of this equation after we get closed form solution.



1. FORBIDDEN SET

In this chapter, we give an explicit definition of forbidden set and determine the for-
bidden set of some difference equations considered in recent papers, equation (1) from
[12] and equation (1) from [3].

1.1 Introduction

Let k be a positive integer, a difference equation of order k is an equation of the form

un+k = f(un+k−1, . . . un), (1.1)

where f : A ⊂ Rk → R is a continuous function.

Definition 1. [3] The forbidden set (F) of difference equation (1.1) is the set of
initial conditions for which after a finite number of iterates we reach a value outside
the domain of definition of the iteration function, i.e.

F = {(uk−1, . . . , u0) : ∃ n ≥ 0 | f(un+k−1, . . . un) is not defined or(
f(un+k−1, . . . un), un+k−1, . . . , un

)
/∈ A}.

If we consider, for example, the simple difference equation

un+1 = c, where c ∈ R,

then the forbidden set of this equation is F = φ because un+1 = c is defined for all
n ≥ 0 where c ∈ R.

Now, take

un+1 =
1

un
,

let u0 6= 0, then the sequence

u0, u1, u2, u3, u4, u5 . . .
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under iteration function

un+1 = f(un) =
1

un
,

become

u0,
1

u0
, u0,

1

u0
, u0,

1

u0
, . . .

which implies, every solution where u0 6= 0 is 2-periodic. On the other hand, if u0 = 0,
then u1 is undefined, therefore, the forbidden set is F = {u0 = 0}.

The difference equation

un+1 =
1

u2n + 1
,

has empty forbidden set (F = φ) in R. Note that i ∈ F when this equation is taken
over the complex field.

Example 1. [2]Determine the forbidden set of the following difference equations:

(a)

un+1 = 2− 1

un
. (1.2)

(b)

un+2 =
un

1 + un+1un
. (1.3)

Solution. (a) un+1 = 2− 1
un
, calculate the terms of this sequence:

u1 = 2− 1

u0
=

2u0 − 1

u0
,

u1 is undefined when u0 = 0, hence F1 = {u0 = 0}.

u2 = 2− 1

u1
= 2− u0

2u0 − 1
=

3u0 − 2

2u0 − 1
,

u2 is undefined when 2u0 − 1 = 0, or u0 = 1
2
, hence F2 = {u0 = 1

2
}.

u3 = 2− 1

u2
= 2− 2u0 − 1

3u0 − 2
=

4u0 − 3

3u0 − 2
,

u3 is undefined when 3u0 − 2 = 0, or u0 = 2
3
, hence F3 = {u0 = 2

3
}.

u4 = 2− 1

u3
= 2− 3u0 − 2

4u0 − 3
=

5u0 − 4

4u0 − 3
,
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u4 is undefined when 4u0 − 3 = 0, or u0 = 3
4
, hence F4 = {u0 = 3

4
}.

which implies,

F5 = {u0 =
4

5
}

F6 = {u0 =
5

6
}

...

Thus, the forbidden set of equation (1.2) is

F = F1 ∪ F2 ∪ F3 ∪ F4 ∪ . . .

=
{
u0 = {0, 1

2
,
2

3
,
3

4
, . . . }

}
=

⋃
n≥0

{
u0 : u0 =

n

n+ 1

}
We can find this forbidden set through two ways, one of them by backward orbits
and the other by solving the difference equation:

First way. Backward orbits:

Let

un+1 = f(un) = 2− 1

un
,

so

un−1 = f−1(un) =
1

2− un
and so

u0 = f−1(u1) = f−1f−1(u2) = · · · = f−n(un)

then,

u1 is undefined when u0 = 0,

u2 is undefined when u1 = 0 so u0 = f−1(u1) = f−1(0) =
1

2
∈ F ,

u3 is undefined when u2 = 0 so u0 = f−2(u2) = f−2(0) =
2

3
∈ F ,

...

un+1 is undefined when un = 0 so u0 = f−n(un) = f−n(0) =
n

n+ 1
∈ F .
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Which implies

F =
⋃
n≥0

{
u0 : u0 =

n

n+ 1

}
.

Now, we can deduce that, to find the forbidden set of equation (1.2), let

f(un) = un+1 = 2− 1

un
, f(un) is undefined when un = 0,

then

f−1(un) =
1

2− un
Assume a new orbit sk, is the backward orbit. Let

sk+1 = f−1(sk), s0 = 0, k ≥ 0,

this implies,

sk = f−k(s0) = f−k(0) =
k

k + 1
,

we start with initial value s0 = 0 since f(un) is undefined when un = 0, and for
every term we moved in the backward orbit, we stay in F . It follows that

F =
⋃
n≥0

{
u0 : u0 =

n

n+ 1

}
Second way: by solving the difference equation

un+1 = 2− 1

un

let
un =

vn+1

vn
, vn 6= 0, n = 0, 1, 2, . . . , (1.4)

this substitution convert difference equation (1.2) to a second order linear homoge-
neous difference equation

vn+2 − 2vn+1 + vn = 0, (1.5)

the characteristic equation is

λ2 − 2λ+ 1 = 0,

so
(λ− 1)2 = 0,
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we have a repeated real root, λ = 1, then the solution of difference equation (1.5)
is

vn = c1(1)n + c2n(1)n

= c1 + c2n

but
v0 = c1 and v1 = c1 + c2,

so
c2 = v1 − v0

which implies
vn = v0 + n(v1 − v0),

from substitution (1.4),

un =
vn+1

vn

=
v0 + (n+ 1)(v1 − v0)
v0 + n(v1 − v0)

since u0 = v1
v0

so v1 = u0v0. Thus

un =
v0 + (n+ 1)(u0v0 − v0)
v0 + n(u0v0 − v0)

=
1 + (n+ 1)(u0 − 1)

1 + n(u0 − 1)
, since v0 6= 0

=
u0n+ u0 − n
1 + u0n− n

,

un is undefined when
1 + u0n− n = 0.

Thus, forbidden sets (F) of the difference equation (1.2) is

F =
⋃
n≥1

{
u0 : u0 =

n− 1

n

}
=

⋃
n≥0

{
u0 : u0 =

n

n+ 1

}
.
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(b) un+2 = un

1+un+1un
, let u0, u1 be given such that u0u1 6= 0, multiply both sides by

un+1 we get,

un+2un+1 =
un+1un

1 + un+1un
, (1.6)

substitute vn = un+1un + 1, this convert equation (1.6) into

vn+1 = 2− 1

vn
, (1.7)

from previous example, the forbidden set of this equation is

F(1) =
⋃
n≥0

{
v0 : v0 =

n

n+ 1

}
,

but vn = un+1un + 1, so the forbidden set of the difference equation (1.3) is

F =
⋃
n≥1

{
v0 : v0 =

n− 1

n

}
=

⋃
n≥1

{
(u1, u0) : u1u0 + 1 =

n− 1

n

}
=

⋃
n≥1

{
(u1, u0) : u1u0 =

−1

n

}

1.2 Forbidden sets of some difference equations

Consider the difference equation

un+2 =
aun

un+1un + b
,

substituting un/
√
b for un and c for a/b gives the equivalent equation

un+1 =
cun

un+1un + 1
. (1.8)

Example 2. [12] The forbidden set F of difference equation (1.8) is a sequence of
hyperbolas as follows:

F =
⋃
n≥0

{(u1, u0) : u1u0 = −µn}, (1.9)

where

µn =

{
c−1

cn+1−1 , if c 6= 1;
1

n+1
, if c = 1.
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Solution. If u1u0 6= 0, multiply both sides of equation (1.8) by un+1, we get

un+2un+1 =
cun+1un

un+1un + 1
,

substitute
1

vn
= un+1un,

we obtain the first order difference equation

vn+1 =
1

c
vn +

1

c
, v0 =

1

u1u0
,

let

f(vn) = vn+1 =
1

c
vn +

1

c

then
f−1(vn) = cvn − 1.

Assume a new orbit sk is the backward orbit then sk+1 = f−1(sk), k ≥ 0, let the initial
value s0 = −1. Consider yk such that sk = 1/yk+1yk, so y1y0 = −1, then

1

yk+1yk
= sk = f−1(sk−1) = f−k(s0) = f−k(−1) = −

k∑
i=0

ci = −

{
ck+1−1
c−1 , if c 6= 1;

k + 1, if c = 1.

In the backward orbit we start with initial point (y1, y0) with y1y0 = −1 and for every
term we moved, we stay in F . It follows that the points (yk+1, yk) are on hyperbolas(1.9),
which completes the proof.

[1] Find the forbidden set of the difference equation

un+3 =
un+2un

aun+2 + bun
, where a, b > 0. (1.10)

Solution. We shall find the general solution of equation (1.10) and then we can deter-
mine the forbidden set. Let

un =
1

vn
,

this substitution converts equation (1.6) into the third order linear homogeneous dif-
ference equation

vn+3 − bvn+2 − avn = 0, (1.11)
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the characteristic equation of this equation is

λ3 − bλ2 − a = 0, (1.12)

the last equation has at least one real root since it’s a polynomial of odd degree, say
µ1, so

µ3
1 − bµ2

1 − a = 0

then
µ3
1 = bµ2

1 + a > 0, since a, b > 0

which implies
µ1 > 0,

also,
µ3
1 > a and µ3

1 > bµ2
1,

therefore,
µ1 >

3
√
a and µ1 > b, a, b, µ1 > 0.

Thus,
µ1 > max{ 3

√
a, b}.

Now, to obtain other two roots µ2,3 of equation (1.12), divide equation(1.12) by λ−µ1,
we get

λ2 + (−b+ µ1)λ+ µ2
1 − µ1b, (1.13)

equation (1.12) can be written as

λ3 − bλ2 − a = (λ− µ1)(λ
2 + (−b+ µ1)λ+ µ2

1 − µ1b)

= 0.

The roots µ2,3 are the roots of the quadratic equation (1.13)

µ2,3 =
−(µ1 − b)±

√
(µ1 − b)2 − 4(µ2

1 − bµ1)

2

=
−(µ1 − b)±

√
−3µ2

1 + 2bµ1 + b2

2

=
−(µ1 − b)

2
±
√
−(3µ1 + b)(µ1 − b)

2
,

but µ1 − b > 0 since µ1 > b > 0, so

−(3µ1 + b)(µ1 − b) < 0,
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it follows that

µ2,3 =
−(µ1 − b)

2
± i
√

(3µ1 + b)(µ1 − b)
2

=
−(µ1 − b)

2
± i
√

3µ2
1 − 2µ1b− b2

2

|µ2,3| =

√(−(µ1 − b)
2

)2
+
(√3µ2

1 − 2µ1b− b2
2

)2
=

√
µ2
1 − 2µ1b+ b2

4
+

3µ2
1 − 2µ1b− b2

4

=
√
µ2
1 − µ1b

=

√
a

µ1

.

Let

θ = tan−1
((√(3µ1 + b)(µ1 − b)

)
/2(

− (µ1 − b)
)
/2

)
= tan−1

(
−

√
3µ1 + b

µ1 − b

)
∈ (π/2, π)

then

µ2 = |µ2| eiθ =
( a
µ1

)1/2
eiθ

µ3 = |µ3| e−iθ =
( a
µ1

)1/2
e−iθ.

Hence, the solution of equation (1.11)

vn = c1µ
n
1 + ĉ2µ

n
2 + ĉ3µ

n
3

= c1µ
n
1 + ĉ2

(( a
µ1

)1/2
eiθ
)n

+ ĉ3

(( a
µ1

)1/2
e−iθ

)n
= c1µ

n
1 + c2

( a
µ1

)n/2
cosnθ + c3

( a
µ1

)n/2
sinnθ,
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where c1, ĉ2, ĉ3 are constants and

c2 = ĉ2 + ĉ3, c3 = i(ĉ2 − ĉ3).

Let v0, v1, v2 be given, then

v0 = c1 + c2,

v1 = c1µ1 + c2

( a
µ1

)1/2
cos θ + c3

( a
µ1

)1/2
sin θ,

v2 = c1µ
2
1 + c2

( a
µ1

)
cos 2θ + c3

( a
µ1

)
sin 2θ,

solving this system of equations for c1, c2, c3, we get

c1 =
∆1

∆
, c2 =

∆2

∆
, c3 =

∆3

∆

where

∆ =

∣∣∣∣∣∣∣∣∣
1 1 0

µ1

(
a
µ1

)1/2
cos θ

(
a
µ1

)1/2
sin θ

µ2
1

a
µ1

cos 2θ a
µ1

sin 2θ

∣∣∣∣∣∣∣∣∣
∆1 =

∣∣∣∣∣∣∣∣∣
v0 1 0

v1

(
a
µ1

)1/2
cos θ

(
a
µ1

)1/2
sin θ

v2
a
µ1

cos 2θ a
µ1

sin 2θ

∣∣∣∣∣∣∣∣∣
∆2 =

∣∣∣∣∣∣∣∣∣
1 v0 0

µ1 v1

(
a
µ1

)1/2
sin θ

µ2
1 v2

a
µ1

sin 2θ

∣∣∣∣∣∣∣∣∣
∆3 =

∣∣∣∣∣∣∣∣∣
1 1 v0

µ1

(
a
µ1

)1/2
cos θ v1

µ2
1

a
µ1

cos 2θ v2

∣∣∣∣∣∣∣∣∣
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then,

c1 =
∆1

∆

=
1

∆

(
v0

[( a
µ1

)3/2
(cos θ sin 2θ − cos 2θ sin θ)

]
+ v1

[
− a

µ1

sin 2θ
]

+ v2

[( a
µ1

)1/2
sin θ

])
=

1

∆

(
1

u0

[( a
µ1

)3/2
sin θ

]
+

1

u0

[
− a

µ1

sin 2θ
]

+
1

u2

[( a
µ1

)1/2
sin θ

])
,

c2 =
∆2

∆

=
1

∆

(
v0

[
− a sin 2θ + µ

3/2
1 a1/2 sin θ

]
+ v1

[ a
µ1

sin 2θ
]

+ v2

[( a
µ1

)1/2
sin 2θ

])
=

1

∆

(
1

u0

[
a sin 2θ − µ3/2

1 a1/2 sin θ
]

+
1

u1

[ a
µ1

sin 2θ
]

+
1

u2

[( a
µ1

)1/2
sin 2θ

])

c3 =
∆3

∆

=
1

∆

(
v0

[
a cos 2θ − µ3/2

1 a1/2 cos θ
]

+ v1

[
− a

µ1

cos 2θ + µ2
1

]
+ v2

[( a
µ1

)1/2
cos θ − µ1

])
=

1

∆

(
1

u0

[
a cos 2θ − µ3/2

1 a1/2 cos θ
]

+
1

u1

[
− a

µ1

cos 2θ + µ2
1

]
+

1

u2

[( a
µ1

)1/2
cos θ − µ1

])
.

Thus, the solution of difference equation (1.10) is

un =
1

vn
=

1

c1µn1 + c2

(
a
µ1

)n/2
cosnθ + c3

(
a
µ1

)n/2
sinnθ

.

The forbidden set of equation (1.10) is the set of all initial values for which un is
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undefined, then

vn = 0

= c1µ
n
1 + c2

( a
µ1

)n/2
cosnθ + c3

( a
µ1

)n/2
sinnθ

=
1

∆

(
1

u0

[( a
µ1

)3/2
sin θ

]
+

1

u1

[
− a

µ1

sin 2θ
]

+
1

u2

[( a
µ1

)1/2
sin θ

])
µn1

+
1

∆

(
1

u0

[
a sin 2θ − µ3/2

1 a1/2 sin θ
]

+
1

u1

[ a
µ1

sin 2θ
]

+
1

u2

[( a
µ1

)1/2
sin 2θ

])( a
µ1

)n/2
cosnθ

+
1

∆

(
1

u0

[
a cos 2θ − µ3/2

1 a1/2 cos θ
]

+
1

u1

[
− a

µ1

cos 2θ + µ2
1

]
+

1

u2

[( a
µ1

)1/2
cos θ − µ1

])( a
µ1

)n/2
sinnθ

which implies

0 =
1

u0

1

∆

([( a
µ1

)3/2
sin θ

]
µn1 +

[
a sin 2θ − µ3/2

1 a1/2 sin θ
]( a
µ1

)n/2
cosnθ

+
[
a cos 2θ − µ3/2

1 a1/2 cos θ
]( a
µ1

)n/2
sinnθ

)
+

1

u1

1

∆

([
− a

µ1

sin 2θ
]
µn1 +

[ a
µ1

sin 2θ
]( a
µ1

)n/2
cosnθ

+
[
− a

µ1

cos 2θ + µ2
1

]( a
µ1

)n/2
sinnθ

)
+

1

u2

1

∆

([( a
µ1

)1/2
sin θ

]
µn1 +

[( a
µ1

)1/2
sin 2θ

]( a
µ1

)n/2
cosnθ

+
[( a
µ1

)1/2
cos θ − µ1

]( a
µ1

)n/2
sinnθ

)
.

Thus, the forbidden set of difference equation (1.10)

F =
⋃
n≥0

{
(u2, u1, u0) ∈ R3 :

α2n

u2
+
α1n

u1
+
α0n

u0

}



1. Forbidden set 13

where

α2n =
1

∆

([( a
µ1

)1/2
sin θ

]
µn1 +

[( a
µ1

)1/2
sin 2θ

]( a
µ1

)n/2
cosnθ +[( a

µ1

)1/2
cos θ − µ1

]( a
µ1

)n/2
sinnθ

)

α1n =
1

∆

([
− a

µ1

sin 2θ
]
µn1 +

[ a
µ1

sin 2θ
]( a
µ1

)n/2
cosnθ

+
[
− a

µ1

cos 2θ + µ2
1

]( a
µ1

)n/2
sinnθ

)

α0n =
1

∆

([( a
µ1

)3/2
sin θ

]
µn1 +

[
a sin 2θ − µ3/2

1 a1/2 sin θ
]( a
µ1

)n/2
cosnθ

+
[
a cos 2θ − µ3/2

1 a1/2 cos θ
]( a
µ1

)n/2
sinnθ

)



2. SYMMETRY METHOD

To clarify the concept of symmetries of an ordinary difference equation (O∆E), it is
helpful to consider the symmetries of geometrical object. A symmetry of a geometrical
object is an invertible transformation that maps the object to itself.

Consider the result of rotating a square anticlockwise about its centre. After a
rotation of π/2, the square looks the same as it did before the rotation, so this transfor-
mation is a symmetry. Rotations of π, 3π/2 and 2π are also symmetries of the square.
In fact, rotating by 2π is equivalent to doing nothing, because each point is mapped to
itself.

Figure(1). Rotation of the square

Definition 2. [9](Trivial symmetry) The transformation mapping each point to it self.

In addition to the rotations described above, the reflections about the four axes
marked in Figure(1) are also symmetries. So the square has eight distinct symmetries.
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b a

cd

c d

ba

c d

ba

a c

db

d b

ac

y by 2π

� by π
2

� by 3π
2

y by π

Fig. 2.1: dd

d c

ab

c d

ba

a b

dc

c d

ba

b d

ca

F igure(2). Refliction of the square

Definition 3. [9]A transformation is a symmetry if it satisfies the following:
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(a) The transformation preserves the structure.

(b) The transformation is a diffeomorphism (a smooth invertible mapping whose inverse
is also smooth).

(c) The transformation maps the object to itself.

Remark 1. (i) Every object has at least one symmetry which is trivial symmetry.

(ii) Each symmetry has a unique inverse, which is itself a symmetry.

(iii) The combined action of the symmetry and its inverse upon the object (in either
order) leaves the object unchanged.

Theorem 2.0.1. [10] The set of all symmetries of a geometrical object is a group.

Example 3. [10] The group of symmetries of the square is called dihedral group D4,
with two generators Γ1 and Γ2 that are shown in Figure (3).

Γ1 : rotation by π/2 (anticlockwise) about the square’s centre.

Γ2: reflection in a centreline.

.

(a)

Γ1 l

(b)

l Γ2

Figure (3). Some symmetries of a square:(a)rotation by π
2
:(b)reflection.

These generators are subject to the relations

(Γ1)
4 = (Γ2)

2 = (Γ1Γ2)
2 = identity map (Γ0)

We can see that Γ1, (Γ1)
2, (Γ1)

3 and (Γ1)
4 = Γ0 , represent the rotations by π/2, π, 3π/2

and 2π respectively, and Γ2, Γ1Γ2, (Γ1)
2Γ2 and (Γ1)

3Γ2, represent the flips about the
four axes.

So the eight distinct symmetries of the square are the elements of dihedral group,

D4 = {id,Γ1, (Γ1)
2, (Γ1)

3,Γ2, Γ1Γ2, (Γ1)
2Γ2, (Γ1)

3Γ2}.
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Note that Γ1Γ2 6= Γ2Γ1.

2.1 Symmetries and Lie symmetries of difference equations

An O∆E (of any order) may be represented by the set of its solution. For an O∆E,
symmetries are defined as follow.

Definition 4. [10] A symmetry of a given O∆E is a locally-defined diffeomorphism,
Γ, that maps the set of all solutions to itself. (Consequently, every solution is mapped
invertibly to a solution.)

Example 4. [10] For ε ∈ R, let

Γε : u 7→ û = eεu,

be a transformation. We consider its affect on a linear homogeneous O∆E of order k.
If v1, v2, . . . , vk are linearly independent solutions, then the general solution is

u =
k∑
i=1

civi, ci’s are constants.

The mapped solution, û, is

û = eε
p∑
i=1

civi =

p∑
i=1

ĉivi, where ĉi = eεci,

so every solution is mapped invertibly to a solution. Thus, Γε is a symmetry of the
O∆E for all ε ∈ R.

Definition 5. [6] A parametrized set of point transformations,

Γε : x 7→ x̂(x, ε), ε ∈ (ε0, ε1)

where ε0 < 0 < ε1, is a one parameter local Lie group if:

(L1) Γ0 is the identity map, so that x̂ = x when ε = 0.

(L2) ΓαΓβ = Γα+β for every α, β sufficiently close to zero.

(L3) Each x̂ can be represented as a Taylor series in ε (in a neighbourhood of ε = 0
that is determined by x), and therefore

x̂(x, ε) = x+ εη(x) + O(ε2)
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A local Lie group may not be group, unless it satisfies group axioms for sufficiently
small parameter values. A one-parameter local Lie group of symmetries of a difference
equation will depend on n and the continuous variable un

(
i.e. ûn = ûn(n, un)

)
. Since

n is a discrete variable that cannot be changed by an arbitrarily small amount, so
every one-parameter local Lie group of symmetries must leave n unchanged. We call
symmetries that belong to a one-parameter local Lie group as ”Lie symmetries”.

Example 5. [10] The transformation

Γε : (n, un) 7→ (n̂, ûn) = (n, eεun), ε ∈ R

is a one-parameter local Lie group.

• (L1) When ε = 0, we obtain (n̂, ûn) = (n, un), so Γ0 is the identity map.

• (L2) Γβ : (n, un) 7→ (n, eβun), which implies

ΓαΓβ : (n, eβun) 7→ (n, eαeβun) = (n, eα+βun).

Thus, ΓαΓβ = Γα+β.

• (L3) ûn can be represented as a Taylor series in ε

ûn = eεun =
(
1 + ε+ o(ε2)

)
un = un + εun + O(ε2).

Now, consider this transformation affect on a linear homogeneous O∆E of order k,
from Example 4, Γε is a symmetry of this O∆E for every ε ∈ R. So Γε is a Lie symmetry

Example 6. [10] consider the difference equation,

un+1 − un = 0. (2.1)

The transformation

Γε : (n, un) 7→ (n̂, ûn) = (n, un + ε), a ∈ R (2.2)

is a Lie symmetry, since Γε is a symmetry for equation (2.1), and it is a one parameter
local Lie group.
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2.2 Characteristics and Canonical Coordinates

In this thesis we restrict attention to Lie symmetries for which ûn depends on n and un
only. These are called Lie point symmetries, they are of the form

n̂ = n, ûn = un + εQ(n, un) + O(ε2). (2.3)

To see how such symmetries transform the shifted variables un+k, simply replace the
free variable n in (2.3) by n+ k:

ûn+k = un+k + εQ(n+ k, un+k) + O(ε2).

This is called the prolongation formula for Lie point symmetries.

The function Q(n, un) is called the characteristic with respect to the coordinates
(n, un). For instance, the characteristic that corresponds to the transformation (2.2),

n̂ = n, ûn = un + ε

is Q(n, un) = 1.

Consider changing of coordinates from (n, un) to (n,wn), where w′n = ∂wn
∂un
6= 0, then

ŵ(n, un) = w(n̂, ûn)

= w(n, un + εQ(n, un) + O(ε2)) by using relation (2.3)

=
(
w
(
n, un + εQ(n, un)

))
|ε=0

+(ε− 0)

(
d

dε

(
w(n, un + εQ(n, un))

)
|ε=0

+ O(ε2), by applying Taylor’s theorem

= w(n, un) + ε

(( d
dû

(
w(n, un + εQ(n, un))

)(dû
dε

))
|ε=0

+ O(ε2)

= w(n, un) + εw′(n, un)Q(n, un) + O(ε2) (2.4)

= w(n, un) + εQ̃(n,wn) + O(ε2)

where,
Q̃(n,wn) = w′(n, un)Q(n, un),

and it is called the characteristic with respect to (n,wn).
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Now, we introduce a canonical coordinate, sn, such that(
n̂, ŝn

)
= (n, sn + ε) ε ∈ R.

The characteristic with respect to (n, sn) is Q̃(n, sn) = 1 = s′(n, un)Q(n, un), so

s(n, un) =

∫
1

Q(n, un)
.

2.3 Linearized Symmetry Condition (LSC)

To determine the Lie point symmetries for a given difference equation, we find the
characteristics by solving the LSC. This will be explained in this section.

2.3.1 First order difference equations

Given a first order difference equation,

un+1 = ω(n, un), (2.5)

with a one-parameter local Lie group of symmetries, so the set of solutions of (2.5) is
mapped to itself and

ûn+1 = ω(n̂, ûn) when un+1 = ω(n, un), (2.6)

is satisfied which is called the symmetry condition.

Expand the symmetry condition (2.6) in powers of ε,

ûn+1

∣∣∣
un+1=ω(n,un)

= {un+1 + εQ(n+ 1, un+1) + O(ε2)}
∣∣∣
un+1=ω(n,un)

= ω(n, un) + εQ(n+ 1, ω(n, un)) + O(ε2)

= ω(n̂, ûn), from (2.6)

= ω(n, un) + εω′(n, un)Q(n, un) + O(ε2), by (2.4)

by comparing coefficients of ε, we obtain

Q(n+ 1, ω(n, un)) = ω′(n, un)Q(n, un). (2.7)

This is called the linearized symmetry condition (LSC) for the difference equation (2.5).
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The LSC (2.7) is a linear functional equation that may be difficult to solve com-
pletely. There is no real need to find the general solution of the LSC, as a single nonzero
solution of the LSC is sufficient to determine the general solution of the O∆E. A prac-
tical approach is to use an ansatz (trial solution). Many physically important Lie point
symmetries have characteristics of the form

Q(n, un) = αnu
2
n + βnun + γn (2.8)

By substituting (2.8) into the LSC (2.7) and comparing powers of un, we obtain a linear
system of O∆Es for the coefficients αn, βn and γn.

Example 7. [10] Find the characteristics of Lie point symmetries for

un+1 =
nun + 1

un + n
= ω(n, un), n ≥ 2 (2.9)

Solution.

ω′(n, un) =
∂ω(n, un)

∂un
=

n2 − 1

(un + n)2

then the LSC for equation (2.9) is

Q
(
n+ 1,

nun + 1

un + n

)
=

n2 − 1

(un + n)2
Q(n, un),

with the ansatz (2.8), we get

αn+1u
2
n+1 + βn+1un+1 + γn+1 = n2−1

(un+n)2

(
αnu

2
n + βnun + γn

)
,

but un+1 = nun+1
un+n

, so

αn+1

(nun + 1

un + n

)2
+ βn+1

nun + 1

un + n
+ γn+1 =

n2 − 1

(un + n)2
(
αnu

2
n + βnun + γn

)
,

multiplying by (un + n)2, we obtain

n2αn+1u
2
n + 2nαn+1un + αn+1 + nβn+1u

2
n + (n2 + 1)βn+1un + nβn+1 + γn+1u

2
n + 2nγn+1un

+ n2γn+1 = (n2 − 1)αnu
2
n + (n2 − 1)βnun + (n2 − 1)γn.

By comparing the powers of u, we get a system of difference equations:

u2 terms : n2αn+1 + nβn+1 + γn+1 = (n2 − 1)αn, (2.10)

u term : 2nαn+1 + (n2 + 1)βn+1 + 2nγn+1un = (n2 − 1)βn, (2.11)

other terms : αn+1 + nβn+1 + n2γn+1 = (n2 − 1)γn, (2.12)
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subtracting (2.12) from (2.10), we get

αn+1 − γn+1 = αn − γn,

so
αn − γn = k1, k1 is a constant,

adding (2.12) to (2.10), we get

(n2 + 1)αn+1 + 2nβn+1 + (n2 + 1)γn+1 = (n2 − 1)(αn + γn) (2.13)

subtracting (2.11) from (2.13) and adding (2.11) to (2.13), we get respectively

αn+1 − βn+1 + γn+1 =
n+ 1

n− 1

(
αn − βn + γn

)
,

αn+1 + βn+1 + γn+1 =
n− 1

n+ 1

(
αn + βn + γn

)
,

which implies

αn − βn + γn =

( n−1∏
i=2

i+ 1

i− 1

)
k2 =

n(n− 1)

2
k2, k2 is a constant,

αn + βn + γn =

( n−1∏
i=2

i− 1

i+ 1

)
k3 =

2

n(n− 1)
k3, k3 is a constant.

We have a linear system of difference equations for the coefficients αn, βn and γn,

αn − γn = k1,

αn − βn + γn =
n(n− 1)

2
k2,

αn + βn + γn =
2

n(n− 1)
k3,

solving the system for the coefficients αn, βn and γn, hence

αn =
1

2
k1 +

n(n− 1)

8
k2 +

1

2n(n− 1)
k3,

βn = −n(n− 1)

4
k2 +

1

n(n− 1)
k3,

γn = −1

2
k1 +

n(n− 1)

8
k2 +

1

2n(n− 1)
k3,
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so the characteristic

Q(n, un) = αnu
2
n + βnun + γn

= k1
(1

2
u2n −

1

2

)
+ k2

(n(n− 1)

8
u2n −

n(n− 1)

4
un +

n(n− 1)

8

)
+k3

( 1

2n(n− 1)
u2n +

1

n(n− 1)
un +

1

2n(n− 1)

)
=

1

2
k1(u

2
n − 1) +

n(n− 1)

8
k2(u

2
n − 2un + 1) +

1

2n(n− 1)
k3(u

2
n + 2un + 1)

2.3.2 Second Order Difference Equations

For a second order difference equation,

un+2 = ω(n, un, un+1),

with a one-parameter local Lie group of symmetries, the symmetry condition is

ûn+2 = ω(n̂, ûn+1, ûn) when un+2 = ω(n, un+1, un), (2.14)

such that ∂ω
∂un+1

6= 0.

Substitute the Lie point symmetries of the form

n̂ = n, ûn+k = un+k + εQ(n+ k, un+k) + O(ε2), ε ∈ R (2.15)

into (2.14), we obtain

ω(n̂, ûn+1, ûn) = w
(
n, un+1 + εQ(n+ 1, un+1), un + εQ(n, un)

)
= ω(n, un+1, un) + ε

(
∂ω

∂ûn+1

∂ûn+1

∂ε

∣∣∣∣
ε=0

+
∂ω

∂ûn

∂ûn
∂ε

∣∣∣∣
ε=0

)
+O(ε2), using a Taylor series about ε = 0

= ω(n, un+1, un) + ε

(
∂ω

∂un+1

Q(n+ 1, un+1) +
∂ω

∂un
Q(n, un)

)
+O(ε2), (2.16)

from (2.15) we have

ω(n̂, ûn+1, ûn) = ûn+2 = un+2 + εQ(n+ 2, un+2) + O(ε2), (2.17)
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comparing equations (2.16) and (2.17),we get the LSC for second order difference equa-
tion:

Q(n+ 2, un+2) = Q(n+ 2, ω) =
∂ω

∂un+1

Q(n+ 1, un+1) +
∂ω

∂un
Q(n, un) (2.18)

Definition 6. [8] The forward shift operator is defined by

S : n 7→ n+ 1, Siun = un+i.

Definition 7. [8] The infinitesimal generator X is

X =
k−1∑
i=0

(
SiQ(n, un)

) ∂

∂un+i
.

The Linearized symmetry condition (2.18) can be written as

S2Q(n, un) = Xω.

This LSC is a functional equation and it is hard to solve. Lie symmetries are diffeo-
morphism. Consequently, Q is a smooth function of its continuous arguments and so
the LSC can be solved by the method of differential elimination as follow:

• First step: Eliminating the first term of LSC of the second order difference equa-
tion, Q(n+ 2, un+2), by applying the differential opartor (L),

L =
∂

∂un
+
∂un+1

∂un

∂

∂un+1

=
∂

∂un
− ∂ω/∂un
∂ω/∂un+1

∂

∂un+1

,

to the LSC (2.18), since ∂ω
∂un
6= 0 and(∂un

∂ω

∂

∂un
− ∂un+1

∂ω

∂

∂un+1

)(
Q(n+ 2, ω)

)
= 0,

then ( ∂

∂un
− ∂ω/∂un
∂ω/∂un+1

∂

∂un+1

)(
Q(n+ 2, ω)

)
= 0,
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so ( ∂

∂un
− ∂ω/∂un
∂ω/∂un+1

∂

∂un+1

)( ∂ω

∂un+1

Q(n+ 1, un+1) +
∂ω

∂un
Q(n, un)

)
= 0,

which implies

∂2ω

∂un+1∂un
Q(n+ 1, un+1)−

∂ω/∂un
∂ω/∂un+1

( ∂2ω

∂u2n+1

Q(n+ 1, un+1) +
∂ω

∂un+1

Q′(n+ 1, un+1

)
∂2ω

∂u2n
Q(n, un)− ∂ω/∂un

∂ω/∂un+1

( ∂2ω

∂un+1∂un
Q(n, un) +

∂ω

∂un
Q′(n, un)

)
= 0,

the last functional equation dose not include Q(n+ 2, un+2).

• Second step: Elimination Q(n + 1, un+1) and Q′(n + 1, un+1). After appropriate
calculations, differentiate once or more, as necessary, with respect to un keeping
un+1 fixed, then we get an ordinary differential equation, we solve it if possible
and we obtain Q(n, un) with undetermined coefficients as functions of n.

• Third step: To find these coefficients of the terms of Q(n, un), we substitute
Q(n, un) in the equations that we obtained in previous steps which can be split
into a system of linear difference equations by collecting all terms with the same
dependence un and un+1.

Example 8. [10] Find the characteristics of the Lie point symmetries for the second
order difference equation

un+2 = e−nun+1u
2
n = ω(n, un+1, un),

Solution. Differentiate ω with respect to un+1, un

∂ω

∂un+1

= e−nu2n =
ω

un+1

,

∂ω

∂un
= 2e−nun+1un =

2ω

un
.

then
∂un+1

∂un
= − ∂ω/∂un

∂ω/∂un+1

= − 2ω/un
ω/un+1

= −2un+1

un

The LSC is

Q(n+ 2, un+2) =
ω

un+1

Q(n+ 1, un+1) +
2ω

un
Q(n, un), (2.19)
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which is functional equation. By differential elimination we transform it to differential
equation as follows: apply the differential operator(L) on LSC functional equation

L =
∂

∂un
+
∂un+1

∂un

∂

∂un+1

=
∂

∂un
+
(
− 2un+1

un

) ∂

∂un+1

,

0 =
∂

∂un

(
Q(n+ 2, un+2)

)
−
(2un+1

un

) ∂

∂un+1

(
Q(n+ 2, un+2)

)
=

∂

∂un

( ω

un+1

Q(n+ 1, un+1) +
2ω

un
Q(n, un)

)
−
(2un+1

un

) ∂

∂un+1

( ω

un+1

Q(n+ 1, un+1) +
2ω

un
Q(n, un)

)
=

2ω

un
Q′(n, un)− 2ω

u2n
Q(n, un)− 2ω

un
Q′(n+ 1, un+1) +

2ω

un+1un
Q(n+ 1, un+1)

we get

0 =
2ω

un
Q′(n, un)− 2ω

u2n
Q(n, un)− 2ω

un
Q′(n+ 1, un+1) +

2ω

un+1un
Q(n+ 1, un+1)

= Q′(n, un)− Q(n, un)

un
−Q′(n+ 1, un+1) +

Q(n+ 1, un+1)

un+1

(2.20)

Now, differentiate this equation with respect to un keeping un+1 fixed,

0 = Q′′(n, un)− Q′(n, un)

un
+
Q(n, un)

u2n
= u2nQ

′′(n, un)− unQ′(n, un) +Q(n, un)

which is an Euler differential equation, whose solution is given by

Q(n, un) = αnun + βnun lnun,

where α and β are functions of n. Substitute this equation into (2.20),

αn+βn+βn lnun−αn−βn lnun−αn+1−βn+1−βn+1 lnun+1 +αn+1 +βn+1 lnun+1 = 0,

then
βn − βn+1 = 0,
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which implies
βn = c,

assume c = βn = 0, then
Q(n, un) = αnun,

substitute this equation into LSC (2.19) in order to find αn, and since ω = un+2, we get

αn+2un+2 =
un+2

un+1

αn+1un+1 +
2un+2

un
αnun

which implies
αn+2 − αn+1 − 2αn = 0,

the characteristic equation is
r2 − r − 2 = 0

and the characteristic roots are: r = −1 and r = 2, hence

αn = c1(−1)n + c2(2)n.

Thus,
Q(n, un) =

(
c1(−1)n + c2(2)n

)
un

2.4 Lie Symmetries to Solve Difference Equations

Finding Q(n, un) in terms of un enables us to write the canonical coordinate in term of
un if we admit the tanslation on canonical coordinate as follow:

n̂ = n, ŝn = sn + ε,

then the characteristic with respect to (n, sn) is

Q̃(n, sn) = 1 = s′(n, un)Q(n, un)

and so

sn =

∫
1

Q(n, un)
.

One of the main uses of a canonical coordinate is to simplify or even solve a given O∆E.
The idea is to rewrite the O∆E as a simpler O∆E for sn; if the simpler O∆E can be
solved, all that remains is to write the solution in terms of the original variables. To
use this approach, therefore, one must be able to invert the map from un to sn. Any
canonical coordinate sn that meets this requirement will be called compatible with the
O∆E.
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2.4.1 First Order Difference Equations

It is not essential to use the general solution of Q(n, un), a single solution can be used
to find sn and determine the solution of the difference equation. We suppose some
constants for the general solution of Q(n, un) equal zero. The following example, after
Lemma, illustrate how the characteristic of the first order difference equation (2.9) can
be used to find the solution.

LEMMA 2.4.1. Let un0 be given, then the general solution of the difference equation

un+1 − un = f(n),

is given by

un = un0 +
n−1∑
k=n0

f(k), for n > n0.

Example 9. [10] Use lie point symmetry to solve the difference equation

un+1 =
nun + 1

un + n
, n ≥ 2, u2 ≥ −1

.

Solution. From example (7) and for k1 = 2, k2 = 0 and k3 = 0,

Q(n, un) = u2n − 1

there is no canonical coordinate un = ±1, if u2 = ±1 then un = u2. The appropriate
real-valued canonical coordinate is

sn =

∫
dun
u2n − 1

=


1
2 ln un−1

un+1 , |un| > 1;
1
2 ln 1−un

1+un
, |un| < 1,

but u2 ≥ −1 which implies u2 ∈ (−1, 1) or (1,∞) then un belong to the same interval,
hence

sn =


1
2 ln un−1

un+1 , un > 1;
1
2 ln 1−un

1+un
, |un| < 1.

The transformation from un to sn is not injective since sn(un) = sn( 1
un

), so sn is not
compatible canonical coordinate. To solve the difference equation and get un we seek
an injective transformation to ensure the compatible condition.Therefore the problem
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of solving the difference equation splits into two separate parts.

Case 1: if un > 1, so

sn =
1

2
ln
un − 1

un + 1
,

therefore the map from un to sn is injective so the compatibility condition is satisfied
and sn is a compatible coordinate.

Now, consider the difference equation for sn

sn+1 − sn =
1

2
ln
(un+1 − 1

un+1 + 1

)
− 1

2
ln
(un − 1

un + 1

)
=

1

2

(
ln(un+1 − 1)− ln(un+1 + 1)− ln(un − 1) + ln(un + 1)

)
=

1

2

(
ln
(nun + 1

un + n
− 1
)
− ln

(nun + 1

un + n
+ 1
)
− ln(un − 1) + ln(un + 1)

)
=

1

2

(
ln
((un − 1)(n− 1)

un + n

)
− ln

((un + 1)(n+ 1)

un + n

)
− ln(un − 1) + ln(un + 1)

)
=

1

2
ln
(n− 1

n+ 1

)
,

then

sn = s2 +
1

2

n−1∑
k=2

ln
(k − 1

k + 1

)
=

1

2
ln
(u2 − 1

u2 + 1

)
+

1

2
ln
( n−1∏
k=2

k − 1

k + 1

)
=

1

2
ln
(u2 − 1

u2 + 1

)
+

1

2
ln
( 2

n(n− 1)

)
=

1

2
ln
( 2(u2 − 1)

(u2 + 1)n(n− 1)

)
,

so
1

2
ln
(un − 1

un + 1

)
=

1

2
ln
( 2(u2 − 1)

(u2 + 1)n(n− 1)

)
which implies

un =
(u2 + 1)n(n− 1) + 2(u2 − 1)

(u2 + 1)n(n− 1)− 2(u2 − 1)
.
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case 2: if |un| < 1, so

sn =
1

2
ln

(
1− un
1 + un

)
,

therefore the map from un to sn is injective so sn is a compatible coordinate.

sn+1 − sn =
1

2
ln

(
1− un+1

1 + un+1

)
− 1

2
ln

(
1− un
1 + un

)
=

1

2
ln
(n− 1

n+ 1

)
,

then

sn = s2 +
1

2

n−1∑
k=2

ln

(
k − 1

k + 1

)
=

1

2
ln

(
2(1− u2)

(1 + u2)n(n− 1)

)
,

so
1

2
ln

(
1− un
1 + un

)
=

1

2
ln

(
2(1− u2)

(1 + u2)n(n− 1)

)
which implies

un =
(u2 + 1)n(n− 1) + 2(u2 − 1)

(u2 + 1)n(n− 1)− 2(u2 − 1)
.

thus, this value of un is valid for all un ≥ −1. The general solution happens to include
the solutions on which Q(n, un) = 0.

2.4.2 Second Order Difference Equations

Using Lie point symmetries (Characteristics) to solve a second order difference equation
is similar to Lie point symmetries for solving first order difference equations. In addition
we need to utilize the invariant function which can reduce the order of the difference
equation by one.

Definition 8. [8] A function vn is invariant under the Lie group of transformations Γε
if X(vn) = 0, where X is the infinitesimal generator mentioned in definition (7).
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Consider the characteristic Q(n, un) for the second order difference equation

un+2 = ω(n, un, un+1)

is known, the invariant vn can be found by solving the quasi linear partial differential
equation

Xvn = Q(n, un)
∂vn
∂un

+Q(n, un+1)
∂vn
∂un+1

= 0,

then
dun

Q(n, un)
=

dun+1

Q(n, un+1)
=
dvn
0
,

that can be solved using the characteristic method. If the invariant function vn+1(n, un, un+1)
can be written as a function of n and vn only, then vn can reduce the order of the dif-
ference equation by one, and we get un+1 = f(n, un, vn). The following example shows
how we can reduce the second order difference equation by one and solve a difference
equation for sn to obtain the solution of the second order difference equation.

Example 10. Consider the second order difference equation

un+2 = e−nun+1u
2
n,

using the characteristic obtained from example (8) to determine the solution of this
difference equation.

Solution. from example (8), suppose c1 = 1 and c2 = 0, we get

Q(n, un) = (−1)nun

Now we want to find the invariant using,

dun
(−1)nun

=
dun+1

(−1)n+1un+1

:=
dvn
0
,

take dun
(−1)nun = dun+1

(−1)n+1un+1
, then

ln | un |= − ln | un+1 | +c, then c = ln | unun+1 |

where c is a constant, so
k1 = unun+1 where k1 = ec,

we also have
dun
un

:=
dvn
0
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then
vn = k, such that k = f(k1),

where k, k1 are constants. Let f(k1) = k1, then

vn = un+1un,

and

vn+1 = un+2un+1

= e−nun+1u
2
nun+1

= e−nv2n.

Now, we want to solve this equation recursively, let v0 be given then

v1 = v20
v2 = e−1v21
v3 = e−2v22 = e−2(e−1v40)2

v4 = e−3v23 = e−3(e−2e−1·2v80)2

v5 = e−4v24 = e−4(e−3e−2·2e−1·4v160 )2

v6 = e−5v25 = e−5(e−4e−3·2e−2·4e−1·8v320 )2

...

= e−1v40
= e−4v80
= e−11v160
= e−24v320
= e−57v640

hence,

vn = e
∑n−2
i=0 (1−n+i)2iv2

n

0 = un+1un

thus,

un+1 =
1

un
e
∑n−2
i=0 (1−n+i)2i(u1u0)

2n .

The order of the difference equation has been reduced by one. To solve the last equation
we need to obtain the canonical coordinate,

sn =

∫
dun

(−1)nun
= (−1)n ln |un| ,
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then

sn+1 − sn = (−1)n+1 ln |un+1| − (−1)n ln |un|
= (−1)n+1[ln |un+1|+ ln |un|]
= (−1)n+1 ln |un+1un|
= (−1)n+1 ln |vn|

= (−1)n+1 ln
∣∣∣e∑n−2

i=0 (1−n+i)2i(u1u0)
2n
∣∣∣

so

sn+1 − sn = (−1)n+1 ln
(
e
∑n−2
i=0 (1−n+i)2i(u1u0)

2n
)

which is a first order homogeneous difference equation. Let s0 be given and by lemma
(2.4.1), we get

sn = s0 +
n−1∑
k=0

(−1)k+1 ln
(
e
∑k−2
i=0 (1−k+i)2i(u1u0)

2k
)

= ln |u0|+
n−1∑
k=0

ln
(
e
∑k−2
i=0 (1−k+i)2i(u1u0)

2k
)(−1)k+1

= ln
(
|u0|

n−1∏
k=0

(
e
∑k−2
i=0 (1−k+i)2

i

(u1u0)
2k
)(−1)k+1

)
The canonical coordinate is

sn = (−1)n ln |un|
which implies

un = exp
[
(−1)nsn

]
= exp

[
(−1)n ln

(
|u0|

n−1∏
k=0

(
e
∑k−2
i=0 (1−k+i)2

i

(u1u0)
2k
)(−1)k+1

)]

= exp

[
ln
(
|u0|(−1)

n
n−1∏
k=0

(
e
∑k−2
i=0 (1−k+i)2i(u1u0)

2k
)(−1)k+n+1

)]

= |u0|(−1)
n
n−1∏
k=0

(
e
∑k−2
i=0 (1−k+i)2

i

(u1u0)
2k
)(−1)k+n+1
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Example 11. Solve the following O∆E by finding the characteristic of Lie point sym-
metry and using it for reduction of order:

un+2 =
un

a+ bun+1un
= w (2.21)

Solution. Let us differentiate this difference equation with respect to un and un+1

∂w

∂un
=

a+ bunun+1 − bunun+1

(a+ bunun+3)2
=

a

(a+ bunun+1)2
.
u2n
u2n

=
aw2

u2n
,

∂w

∂un+1

=
−bu2n

(a+ bunun+1)2
= −bw2

and so

∂un+1

∂un
= − ∂w/∂un

∂w/∂un+1

= −aw
2/u2n
−bw2

=
a

bu2n
.

The linearized symmetry condition (LSC) is given by

Q(n+ 2, un+2)−
∂w

∂un+1

Q(n+ 1, un+1)−
∂w

∂un
Q(n, un) = 0

Q(n+ 2, un+2) + bw2Q(n+ 1, un+1)−
aw2

u2n
Q(n, un) = 0.

Now, by applying the differential operator L to the previous equation, where

L =
∂

∂un
+
∂un+1

∂un

∂

∂un+1

we get

∂

∂un

(
Q(n+ 2, un+2)

)
+
∂un+1

∂un

∂

∂un+1

(
Q(n+ 2, un+2)

)

=
∂

∂un

(
− bw2Q(n+ 1, un+1) +

aw2

u2n
Q(n, un)

)
+

a

bu2n

∂

∂un+1

(
− bw2Q(n+ 1, un+1) +

aw2

u2n
Q(n, un)

)
=

aw2

u2n
Q′(n, un)− 2aw2

u3n
Q(n, un)− aw2

u2n
Q′(n+ 1, un+1)

= 0
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multiply this equation by u2n
aw2

Q′(n, un)− 2

un
Q(n, un)−Q′(n+ 1, un+1) = 0 (2.22)

differentiate the equation with respect to un keeping un+1 fixed .

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2n
Q(n, un) = 0

again multiply by u2n

u2nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0

which is an Euler Equation, whose solution is

Q(n, un) = α(n)u2n + β(n)un

thus,
Q′(n, un) = 2α(n)un + β(n)

substitute into equation (2.22)

0 = 2α(n)un + β(n)− 2α(n)un − 2β(n)− 2α(n+ 1)un+1 − β(n+ 1)

= −β(n)− β(n+ 1)− 2α(n+ 1)un+1

comparing both sides of the last equation, we have

α(n+ 1) = 0 and so α(n) = 0

and we have also
β(n+ 1) + β(n) = 0

which is a first order linear difference equation, whose solution is

β(n) = c(−1)n

where c is constant. Suppose that c = 1 so β(n) = (−1)n, which implies

Q(n, un) = (−1)nun.
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We want to find the invariant using,

dun
(−1)nun

=
dun+1

(−1)n+1un+1

:=
dvn
0
,

take dun
(−1)nun = dun+1

(−1)n+1un+1
invariants,

so
ln | un |= − ln | un+1 | +c, then c = ln | unun+1 |

where c is constant, so
k1 = unun+1 where k1 = ec,

we also have
dun
un

:=
dvn
0

and so
vn = k, such that k = f(k1), f is an arbitrary function

where k, k1 are constants. Let f(k1) = k1, then

vn = un+1un,

and

vn+1 = un+2un+1 =
unun+1

a+ bunun+1

=
vn

a+ bvn
.

Now, we want to solve this equation

vn+1 =
vn

a+ bvn
(2.23)

so
1

vn+1

=
a

vn
+ b,

let

zn =
1

vn
,

this substitution converts equation (2.23) to the following first order linear equation

zn+1 − azn − b = 0
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whose solution is

zn =

{
anz0 + b

[
an−1
a−1

]
, if a 6= 1

z0 + bn, if a = 1

}
Case 1 : if a 6= 1

zn = anz0 + b

[
an − 1

a− 1

]
so

vn =
1

zn
=

1

anz0 + b
[
an−1
a−1

] = unun+1,

thus

un+1 =
1

un(anz0 + b
[
an−1
a−1

]
)
.

To solve the last equation we need to obtain the canonical coordinate,

sn =

∫
dun

(−1)nun

= (−1)n ln |un| .

So

sn+1 − sn = (−1)n+1 ln |un+1| − (−1)n ln |un|
= (−1)n+1[ln |un+1|+ ln |un|]
= (−1)n+1 ln |un+1un|
= (−1)n+1 ln |vn|

= (−1)n+1 ln

∣∣∣∣∣ 1

anz0 + b
[
an−1
a−1

]∣∣∣∣∣
= (−1)n ln

∣∣∣∣anz0 + b(
an − 1

a− 1
)

∣∣∣∣
so

sn+1 − sn = (−1)n ln

∣∣∣∣anz0 + b(
an − 1

a− 1
)

∣∣∣∣
, which is a first order nonhomogenous difference equation, by lemma 2.4.1



2. Symmetry method 38

then

sn = s0 +
n−1∑
k=0

(−1)k ln

∣∣∣∣akz0 + b(
ak − 1

a− 1
)

∣∣∣∣
= ln |u0|+

n−1∑
k=0

(−1)k ln

∣∣∣∣akz0 + b(
ak − 1

a− 1
)

∣∣∣∣
The canonical coordinate is

sn = (−1)n ln |un|

which implies

un = exp
(
(−1)nsn

)
= exp

(
(−1)n ln |u0|+ (−1)n

n−1∑
k=0

(−1)k ln

∣∣∣∣akz0 + b

[
ak − 1

a− 1

]∣∣∣∣ )

= exp

(
ln |u0|(−1)

n

)
exp

( n−1∑
k=0

(−1)n+k ln

∣∣∣∣akz0 + b

[
ak − 1

a− 1

]∣∣∣∣ )

= u
(−1)n
0 exp

( n−1∑
k=0

ln

(
akz0 + b

[
ak − 1

a− 1

])(−1)k+n)

= u
(−1)n
0

n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n

. (2.24)

To verify our computations, we want to show that solution (2.24) satisfy equation (2.21),
which can be written as

un
un+2

= a+ bun+1un



2. Symmetry method 39

The left hand side

un
un+2

=
u
(−1)n
0

∏n−1
k=0

(
ak 1

u0u1
+ b
[
ak−1
a−1

])(−1)k+n
u
(−1)n+2

0

∏n+1
k=0

(
ak 1

u0u1
+ b
[
ak−1
a−1

])(−1)k+n+2

=
u
(−1)n
0

∏n−1
k=0

(
ak 1

u0u1
+ b
[
ak−1
a−1

])(−1)k+n
u
(−1)n
0

∏n+1
k=0

(
ak 1

u0u1
+ b
[
ak−1
a−1

])(−1)k+n
=

∏n−1
k=0

(
ak 1

u0u1
+ b
[
ak−1
a−1

])(−1)k+n∏n−1
k=0

(
ak 1

u0u1
+ b
[
ak−1
a−1

])(−1)k+n
· 1(
an 1

u0u1
+ b
[
an−1
a−1

])(−1)n+n(
an+1 1

u0u1
+ b
[
an+1−1
a−1

])(−1)n+1+n

=
1(

an 1
u0u1

+ b
[
an−1
a−1

])(−1)2n(
an+1 1

u0u1
+ b
[
an+1−1
a−1

])(−1)2n+1

=

(
an+1 1

u0u1
+ b
[
an+1−1
a−1

])(
an 1

u0u1
+ b
[
an−1
a−1

]) .

The right hand side a+ bun+1un

un+1un = u
(−1)n+1

0

n∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n+1

u
(−1)n
0

n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n

= u
(−1)n+1

0 u
(−1)n
0

n∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n+1 n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n

=
n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n+1 (
an

1

u0u1
+ b

[
an − 1

a− 1

])(−1)n+n+1

·
n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n

=

(
an

1

u0u1
+ b

[
an − 1

a− 1

])(−1)2n+1

=

(
an

1

u0u1
+ b

[
an − 1

a− 1

])−1
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so

a+ bun+1un = a+
b(

an 1
u0u1

+ b
[
an−1
a−1

])
=

an+1 1
u0u1

+ ban+1−ba
a−1 + b(

an 1
u0u1

+ b
[
an−1
a−1

])
=

(
an+1 1

u0u1
+ b
[
an+1−1
a−1

])(
an 1

u0u1
+ b
[
an−1
a−1

])
Case 2 : if a = 1

zn = z0 + bn

so

vn =
1

zn
=

1

z0 + bn
= unun+1

and so

un+1 =
1

un(z0 + bn)
.

To solve the last equation we need to obtain the canonical coordinate,

sn =

∫
dun

(−1)nun

= (−1)n ln |un|

so

sn+1 − sn = (−1)n+1 ln |un+1| − (−1)n ln |un|
= (−1)n+1[ln |un+1|+ ln |un|]
= (−1)n+1 ln |un+1un|
= (−1)n+1 ln |vn|

= (−1)n+1 ln

∣∣∣∣ 1

z0 + bn

∣∣∣∣
= (−1)n ln |z0 + bn|
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so

sn+1 − sn = (−1)n ln |z0 + bn| ,

which is a first order nonhomogenous difference equation, by lemma 2.4.1, then

sn = s0 +
n−1∑
k=0

(−1)k ln |z0 + bk|

= ln |u0|+
n−1∑
k=0

(−1)k ln |z0 + bk|

The canonical coordinate is
sn = (−1)n ln |un|

which implies

un = exp
(
(−1)nsn

)
= exp

(
(−1)n ln |u0|+ (−1)n

n−1∑
k=0

(−1)k ln |z0 + bk|
)

= exp

(
ln |u0|(−1)

n

)
exp

( n−1∑
k=0

(−1)n+k ln |z0 + bk|
)

= u
(−1)n
0 exp

( n−1∑
k=0

ln
(
z0 + bk

)(−1)k+n)

= u
(−1)n
0

n−1∏
k=0

( 1

u0u1
+ bk

)(−1)k+n
. (2.25)

verifying the solution as in the previous case. As mentioned above, equation (2.21) can
be written as

un
un+2

= a+ bun+1un.
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The left hand side

un
un+2

=
u
(−1)n
0 ·

∏n−1
k=0

(
1

u0u1
+ bk

)(−1)k+n
u
(−1)n+2

0 ·
∏n+1

k=0

(
1

u0u1
+ bk

)(−1)k+n+2

=
u
(−1)n
0 ·

∏n−1
k=0

(
1

u0u1
+ bk

)(−1)k+n
u
(−1)n
0 ·

∏n+1
k=0

(
1

u0u1
+ bk

)(−1)k+n
=

∏n−1
k=0

(
1

u0u1
+ bk

)(−1)k+n∏n+1
k=0

(
1

u0u1
+ bk

)(−1)k+n
=

∏n−1
k=0

(
1

u0u1
+ bk

)(−1)k+n∏n−1
k=0

(
1

u0u1
+ bk

)(−1)k+n · ( 1
u0u1

+ bn
)(−1)n+n · ( 1

u0u1
+ b(n+ 1)

)(−1)n+1+n

=
1(

1
u0u1

+ bn
)(−1)2n · ( 1

u0u1
+ b(n+ 1)

)(−1)2n+1

=
1

u0u1
+ b(n+ 1)
1

u0u1
+ bn

.

Now, calculating a+ bun+1un

un+1un = u
(−1)n+1

0

n∏
k=0

( 1

u0u1
+ bk

)(−1)k+n+1

u
(−1)n
0

n−1∏
k=0

( 1

u0u1
+ bk

)(−1)k+n
= u

(−1)n+1

0 u
(−1)n
0

n−1∏
k=0

( 1

u0u1
+ bk

)(−1)k+n+1 ( 1

u0u1
+ bn

)(−1)n+n+1
n−1∏
k=0

( 1

u0u1
+ bk

)(−1)k+n
=

( 1

u0u1
+ bn

)(−1)2n+1

=
( 1

u0u1
+ bn

)−1
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so

a+ bun+1un = 1 + bun+1un = 1 +
b(

1
u0u1

+ bn
)

=
1

u0u1
+ bn+ b(

1
u0u1

+ bn
)

=
1

u0u1
+ b(n+ 1)
1

u0u1
+ bn

.

So our computations are true.

2.5 Higher Order Difference Equations

In order to solve an O∆E of order k,

un+k = ω(n, u, ..., un+k−1),
∂ω

∂un
6= 0

using symmetry method, apply similar steps as those to solve second order difference
equation in the previous sections:

• Step 1: Write out the LSC for the O∆E which is a functional equation.

• Step 2: Using differential elimination with appropriate differential operators and
suitable differentiation with respect independent variable to solve the LSC to get
a differential equation for Q(n, un), and solve it if that is possible.

• Step 3: Substitute Q(n, un) in equations obtained from step 2 and the LSC to get
the coefficients of terms of Q(n, un).

• Step 4: After finding the characteristic Q(n, un), we want to get the invariant vn
by solving the partial differential equation

Xvn = Q(n, un)
∂vn
∂un

+ SQ(n, un)
∂vn
∂un+1

+ · · ·+ Sp−1Q(n, un)
∂vn

∂un+p−1
,

solving this equation using characteristic method, we set

dun
Q(n, un)

=
dun+1

SQ(n, un)
= · · · = dun+p−1

Sp−1Q(n, un)
:=

dvn
0



2. Symmetry method 44

• Step 5: Write a compatible canonical coordinate sn and solve a difference equation
for sn that would be written after finding the invariant

• Step 6: We get un from the canonical coordinate



3. FORBIDDEN SET OF THE DIFFERENCE EQUATION
UN+2(I+1) = UN

A+BUN+I+1UN

In this chapter we will find a closed form solution for the difference equation

un+2(i+1) =
un

a+ bun+i+1un

for even i. Then, we give full details for a special case i = 2 and for i = 0. Then we
solve (open problem 17 for even i in [3] ) by finding the forbidden set of these difference
equations. We assume that (u0, u1, u2, . . . , u2r−1) ∈ R2r such that u0u1u2 . . . u2r−1 6= 0
and a, b > 0

3.1 Solution of un+2(i+1) = un

a+bun+i+1un
When i is Even

Consider the difference equation

un+2(i+1) =
un

a+ bun+i+1un
= w(un, un+i+1), u0u1u2 . . . u2r−1 6= 0. (3.1)

Let r = i+ 1, be an odd number then

un+2r =
un

a+ bun+run
= w, (3.2)

Differentiate w with respect to un and un+r

∂w

∂un
=

a+ bunun+r − bunun+r
(a+ bunun+r)2

=
a

(a+ bunun+r)2
· u

2
n

u2n
=
aw2

u2n
,

∂w

∂un+r
=

−bu2n
(a+ bunun+r)2

= −bw2

and so

∂un+r
∂un

= − ∂w/∂un
∂w/∂un+r

= −aw
2/u2n
−bw2

=
a

bu2n
.
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The linearized symmetry condition (LSC) is given by

Q(n+ 2r, un+2r)−
∂w

∂un+r
Q(n+ r, un+r)−

∂w

∂un
Q(n, un) = 0

Q(n+ 2r, un+2r) + bw2Q(n+ r, un+r)−
aw2

u2n
Q(n, un) = 0.

Now, by applying the differential operator L to the previous equation, where

L =
∂

∂un
+
∂un+r
∂un

∂

∂un+r

=
∂

∂un
+

a

bu2n

∂

∂un+r

we get

∂

∂un

(
Q(n+ 2r, un+2r)

)
+

a

bu2n

∂

∂un+r

(
Q(n+ 2r, un+2r)

)

=
∂

∂un

(
− bw2Q(n+ r, un+r) +

aw2

u2n
Q(n, un)

)
+

a

bu2n

∂

∂un+r

(
− bw2Q(n+ r, un+r) +

aw2

u2n
Q(n, un)

)

which implies

aw2

u2n
Q′(n, un)− 2aw2

u3n
Q(n, un)− aw2

u2n
Q′(n+ r, un+r) = 0

multiply this equation by u2n
aw2

Q′(n, un)− 2

un
Q(n, un)−Q′(n+ r, un+r) = 0 (3.3)

differentiate the equation with respect to un keeping un+r fixed

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2n
Q(n, un) = 0
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again multiply by u2n

u2nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0

which is an Euler Equation, whose solution is

Q(n, un) = αnu
2
n + βnun

thus
Q′(n, un) = 2αnun + βn

substitute into equation (3.3)

0 = 2αnun + βn − 2αnun − 2βn − 2αn+run+r − βn+r
= −βn − βn+r − 2αn+run+r

comparing both sides of the last equation, we get

αn+r = 0 and so αn = 0

we have also
βn+r + βn = 0 (3.4)

which is a rth order linear homogeneous difference equation. The characteristic equation
of equation (3.4) is

λr + 1 = 0 (3.5)

thus, the general solution of equation (3.4) is

βn = c1(−1)n + c2λ
n
1 + c3λ

n
2 + ...+ crλ

n
r−1

where {−1, λ1, . . . , λr−1} are the characteristic roots and c1, c2, ..., cr are constants.
Suppose that c2 = c3 = ... = cr = 0 and c1 = 1, so βn = (−1)n, which implies

Q(n, un) = (−1)nun.

To find the invariant,
dun

(−1)nun
=

dun+r
(−1)n+run+r

:=
dvn
0
,

take dun
(−1)nun = dun+r

(−1)n+run+r invariants,
so

ln | un |= (−1)r ln | un+r | +c = − ln | un+r | +c, then c = ln | unun+r |
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where c is constant, so
k1 = unun+r where k1 = ec,

we also have
dun
un

:=
dvn
0

and so
vn = k, such thatk = f(k1)

where k, k1 are constants. Let f(k1) = k1, then

vn = un+run,

and
vn+r = un+2run+r =

unun+r
a+ bunun+r

=
vn

a+ bvn
.

so
1

vn+r
=

a

vn
+ b (3.6)

let

zn =
1

vn
, (3.7)

this substitution converts equation (3.6) to the following rth order linear equation

zn+r − azn − b = 0 (3.8)

so
zn+r − azn = b

3.1.1 The Case a 6= 1

The characteristic equation of the homogeneous equation

zn+r − azn = 0

is
λr − a = 0.
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The roots of the last equation are

µ1 = a
1
r ,

µ2 = a
1
r ei

2π
r ,

µ3 = a
1
r ei

4π
r ,

...

µr−1 = a
1
r ei

2(r−2)π
r

µr = a
1
r ei

2(r−1)π
r

So the soluation of the homogeneous part is

zh = c1µ
n
1 + ĉ2µ

n
2 + ĉ3µ

n
3 + · · ·+ ĉr−1µ

n
r−1 + ĉrµ

n
r

= a
n
r

(
c1 + ĉ2e

i 2nπ
r + ĉ3e

i 4nπ
r + · · ·+ ĉr−1e

i
2(r−2)nπ

r + ĉre
i
2(r−1)nπ

r

)
= a

n
r

(
c1 + c2 cos

2nπ

r
+ c3 sin

2nπ

r
+ · · ·+ cr−1 cos

(r − 1)nπ

r
+ cr sin

(r − 1)nπ

r

)
= c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

]
,

where c1, ĉ2, ĉ3, . . . , ĉr−1, ĉr are constants and

c2j = ĉj+1 + ĉr−j+1, c2j+1 = i(ĉj+1 − ĉr−j+1),

for j = 1, 2, . . . , r−1
2
.

The particular solution is

zp =
b

1− a
thus, the solution of equation (3.8) is

zn = zh + zp

= a
n
r

(
c1 +

r−1
2∑
j=1

[
c2jcos

2jnπ

r
+ c2j+1 sin

2jnπ

r

])
+

b

1− a
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Given initial values z0, z1, . . . , zr−1, the constants c1, c2, . . . , cr satisfy the following sys-
tem of equations

(
z0 −

b

1− a
)

= c1 +

r−1
2∑
j=1

c2j

(
z1 −

b

1− a
)
a−

1
r = c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

]
(
z2 −

b

1− a
)
a−

2
r = c1 +

r−1
2∑
j=1

[
c2j cos

4jπ

r
+ c2j+1 sin

4jπ

r

]
...

(
zr−2 −

b

1− a
)
a−

r−2
r = c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 2)jπ

r
+ c2j+1 sin

2(r − 2)jπ

r

]
(
zr−1 −

b

1− a
)
a−

r−1
r = c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 1)jπ

r
+ c2j+1 sin

2(r − 1)jπ

r

]

then

c1 =
∆1

∆
, c2 =

∆2

∆
, c3 =

∆3

∆
, . . . , cr−1 =

∆r−1

∆
and cr =

∆r

∆
, cr constants
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such that

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 1 0

1 cos 2π
r

sin 2π
r

. . . cos (r−1)π
r

sin (r−1)π
r

1 cos 4π
r

sin 4π
r

. . . cos 2(r−1)π
r

sin 2(r−1)π
r

...
. . .

...

1 cos 2(r−2)π
r

sin 2(r−2)π
r

. . . cos (r−2)(r−1)π
r

sin (r−2)(r−1)π
r

1 cos 2(r−1)π
r

sin 2(r−1)π
r

. . . cos (r−1)2π
r

sin (r−1)2π
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

(
z0 − b

1−a

)
1 0 . . . 1 0(

z1 − b
1−a

)
a−

1
r cos 2π

r
sin 2π

r
. . . cos (r−1)π

r
sin (r−1)π

r(
z2 − b

1−a

)
a−

2
r cos 4π

r
sin 4π

r
. . . cos 2(r−1)π

r
sin 2(r−1)π

r
...

. . .
...(

zr−2 − b
1−a

)
a−

r−2
r cos 2(r−2)π

r
sin 2(r−2)π

r
. . . cos (r−2)(r−1)π

r
sin (r−2)(r−1)π

r(
zr−1 − b

1−a

)
a−

r−1
r cos 2(r−1)π

r
sin 2(r−1)π

r
. . . cos (r−1)2π

r
sin (r−1)2π

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
z0 −

b

1− a

)
∆01 −

(
z1 −

b

1− a

)
a−

1
r∆11 +

(
z2 −

b

1− a

)
a−

2
r∆21

− · · · −
(
zr−2 −

b

1− a

)
a−

r−2
r ∆(r−2)1 +

(
zr−1 −

b

1− a

)
a−

r−1
r ∆(r−1)1

such that ∆j1 is the minor of an element (j + 1, 1) of ∆1, j = 0, 1, . . . , r − 1.
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∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
(
z0 − b

1−a

)
0 . . . 1 0

1
(
z1 − b

1−a

)
a−

1
r sin 2π

r
. . . cos (r−1)π

r
sin (r−1)π

r

1
(
z2 − b

1−a

)
a−

2
r sin 4π

r
. . . cos (r−1)π

r
sin 2(r−1)π

r
...

. . .
...

1
(
zr−2 − b

1−a

)
a−

r−2
r sin 2(r−2)π

r
. . . cos (r−2)(r−1)π

r
sin (r−2)(r−1)π

r

1
(
zr−1 − b

1−a

)
a−

r−1
r sin 2(r−1)π

r
. . . cos (r−1)2π

r
sin (r−1)2π

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

(
z0 −

b

1− a

)
∆02 +

(
z1 −

b

1− a

)
a−

1
r∆12 −

(
z2 −

b

1− a

)
a−

2
r∆22

+ · · ·+
(
zr−2 −

b

1− a

)
a−

r−2
r ∆(r−2)2 −

(
zr−1 −

b

1− a

)
a−

r−1
r ∆(r−1)2

such that ∆j2 is the minor of an element (j + 1, 2) of ∆2 j = 0, 1, . . . , r − 1.

∆3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1
(
z0 − b

1−a

)
. . . 1 0

1 cos 2π
r

(
z1 − b

1−a

)
a−

1
r . . . cos (r−1)π

r
sin (r−1)π

r

1 cos 4π
r

(
z2 − b

1−a

)
a−

2
r . . . cos 2(r−1)π

r
sin 2(r−1)π

r
...

. . .
...

1 cos 2(r−2)π
r

(
zr−2 − b

1−a

)
a−

(r−2)
r . . . cos (r−2)(r−1)π

r
sin (r−2)(r−1)π

r

1 cos 2(r−1)π
r

(
zr−1 − b

1−a

)
a−

r−1
r . . . cos (r−1)2π

r
sin (r−1)2π

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
=
(
z0 −

b

1− a

)
∆03 −

(
z1 −

b

1− a

)
a−

1
r∆13 +

(
z2 −

b

1− a

)
a−

2
r∆23

− · · · −
(
zr−2 −

b

1− a

)
a−

r−2
r ∆(r−2)3 +

(
zr−1 −

b

1− a

)
a−

r−1
r ∆(r−1)3

such that ∆j3 is the minor of an element (j + 1, 3) of ∆3, j = 0, 1, . . . , r − 1.
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∆r−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . .
(
z0 − b

1−a

)
0

1 cos 2π
r

sin π
r

. . .
(
z1 − b

1−a

)
a−

1
r sin (r−1)π

r

1 cos 4π
r

sin 4π
r

. . .
(
z2 − b

1−a

)
a−

2
r sin 2(r−1)π

r
...

. . .
...

1 cos 2(r−2)π
r

sin 2(r−2)π
r

. . .
(
zr−2 − b

1−a

)
a−

r−2
r sin (r−2)(r−1)π

r

1 cos 2(r−1)π
r

sin 2(r−1)π
r

. . .
(
zr−1 − b

1−a

)
a−

r−1
r sin (r−1)2π

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −

(
z0 −

b

1− a

)
∆0(r−1) +

(
z1 −

b

1− a

)
a−

1
r∆1(r−1) −

(
z2 −

b

1− a

)
a−

2
r∆2(r−1)

+ · · ·+
(
zr−2 −

b

1− a

)
a−

r−2
r ∆(r−2)(r−1) −

(
zr−1 −

b

1− a

)
a−

r−1
r ∆(r−1)(r−1)

such that ∆j(r−1) is the minor of an element (j+1, (r−1)) of ∆r−1, j = 0, 1, . . . , r−1.

∆r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 1
(
z0 − b

1−a

)
1 cos 2π

r
sin 2π

r
. . . cos (r−1)π

r

(
z1 − b

1−a

)
a−

1
r

1 cos 4π
r

sin 4π
r

. . . cos 2(r−1)π
r

(
z2 − b

1−a

)
a−

2
r

...
. . .

...

1 cos 2(r−2)π
r

sin 2(r−2)π
r

. . . cos (r−2)(r−1)π
r

(
zr−2 − b

1−a

)
a−

(r−2)
r

1 cos 2(r−1)π
r

sin 2(r−1)π
r

. . . cos (r−1)2π
r

(
zr−1 − b

1−a

)
a−

r−1
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z0∆0r − z1∆r1 + z2∆2r − · · · − zr−2∆(r−2)r + zr−1∆(r−1)r

− b

1− a
(
∆0r −∆1r + ∆2r − · · · −∆(r−2)r + ∆(r−1)r

)
=
(
z0 −

b

1− a

)
∆0r −

(
z1 −

b

1− a

)
a−

1
r∆1r +

(
z2 −

b

1− a

)
a−

2
r∆2r

− · · · −
(
zr−2 −

b

1− a

)
a−

r−2
r ∆(r−2)r −

(
zr−1 −

b

1− a

)
a−

r−1
r ∆(r−1)r



3. Forbidden Set of The Difference Equation un+2(i+1) =
un

a+bun+i+1un
54

such that ∆jr is the minor of an element (j + 1, r) of ∆r, j = 0, 1, . . . , r − 1.

So

cx =
∆x

∆

=
1

∆

r−1∑
t=0

(−1)t+x+1
(
zt −

b

1− a
)
a−

t
r∆tx

=
1

∆

r−1∑
t=0

(−1)t+x+1
( 1

utut+r
− b

1− a
)
a−

t
r∆tx , x = 1, 2, . . . , r

thus,

c2j =
1

∆

r−1∑
t=0

(−1)t+2j+1
(
zt −

b

1− a
)
a−

t
r∆t(2j)

=
1

∆

r−1∑
t=0

(−1)t+1
( 1

utut+r
− b

1− a
)
a−

t
r∆t(2j)

c2j+1 =
1

∆

r−1∑
t=0

(−1)t+2j+1+1
(
zt −

b

1− a
)
a−

t
r∆t(2j+1)

=
1

∆

r−1∑
t=0

(−1)t
( 1

utut+r
− b

1− a
)
a−

t
r∆t(2j+1)

The invariant vn is given by

vn =
1

zn

=
1

a
n
r

(
c1 +

∑ r−1
2

j=1

[
c2j cos 2jnπ

r
+ c2j+1 sin 2jnπ

r

])
+ b

1−a

= un+run

and so

un+r =
1[

a
n
r

(
c1 +

∑ r−1
2

j=1

[
c2j cos 2jnπ

r
+ c2j+1 sin 2jnπ

r

])
+ b

1−a

]
un
.

To solve the last equation we need to obtain the canonical coordinate,

sn =

∫
dun

(−1)nun
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= (−1)n ln |un|
so

sn+r − sn = (−1)n+r ln |un+r| − (−1)n ln |un|
= (−1)n+1[ln |un+r|+ ln |un|]
= (−1)n+1 ln |un+run|
= (−1)n+1 ln |vn|

= (−1)n+1 ln

∣∣∣∣∣∣ 1

a
n
r

(
c1 +

∑ r−1
2

j=1

[
c2j cos 2jnπ

r
+ c2j+1 sin 2jnπ

r

])
+ b

1−a

∣∣∣∣∣∣
= (−1)n+2 ln

∣∣∣∣∣∣anr (c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

])
+

b

1− a

∣∣∣∣∣∣
and so

sn+r − sn = (−1)n ln

∣∣∣∣∣∣anr (c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

])
+

b

1− a

∣∣∣∣∣∣
which is a rth order non homogeneous difference equation that can be solved recursively.
Let s0, s1, . . . , sr−1 be given and let

f(n) = (−1)n ln

∣∣∣∣∣∣anr (c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

])
+

b

1− a

∣∣∣∣∣∣
then

sn+r = sn + f(n)

sr = s0 + f(0)

s2r = sr + f(r) = s0 + f(0) + f(r)

s3r = s2r + f(2r) = s0 + f(0) + f(r) + f(2r)

s4r = s3r + f(3r) = s0 + f(0) + f(r) + f(2r) + f(3r)
...
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so, for n = mr, m = 1, 2, 3, ...

sn = smr = s0 + f(0) + f(r) + f(2r) + f(3r) + ...+ f
(
(m− 1)r

)
= s0 +

m−1∑
k=0

f(kr)

but

f(kr) = (−1)kr ln

∣∣∣∣∣∣ak(c1 +

r−1
2∑
j=1

[
c2j cos

2j(kr)π

r
+ c2j+1 sin

2j(kr)π

r

])
+

b

1− a

∣∣∣∣∣∣
= (−1)kr ln

∣∣∣∣∣∣ak(c1 +

r−1
2∑
j=1

c2j
)

+
b

1− a

∣∣∣∣∣∣
hence,

smr = s0 +
m−1∑
k=0

(−1)rk ln

∣∣∣∣∣∣ak(c1 +

r−1
2∑
j=1

c2j
)

+
b

1− a

∣∣∣∣∣∣ . (3.9)

Also

sr+1 = s1 + f(1)

s2r+1 = sr+1 + f(r + 1) = s1 + f(1) + f(r + 1)

s3r+1 = s2r+1 + f(2r + 1) = s1 + f(1) + f(r + 1) + f(2r + 1)

s4r+1 = s3r+1 + f(3r + 1) = s1 + f(1) + f(r + 1) + f(2r + 1) + f(3r + 1)
...

so, for n = mr + 1, m = 1, 2, 3, ...

sn = smr+1 = s1 + f(1) + f(r + 1) + f(2r + 1) + · · ·+ f
(
(m− 1)r + 1

)
= s1 +

m−1∑
k=0

f(kr + 1)
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but

f(rk + 1) = (−1)rk+1 ln

∣∣∣∣∣∣a rk+1
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2j(rk + 1)π

r
+ c2j+1 sin

2j(rk + 1)π

r

])
+

b

1− a

∣∣∣∣∣∣
= (−1)rk+1 ln

∣∣∣∣∣∣ak+ 1
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

])
+

b

1− a

∣∣∣∣∣∣
hence,

smr+1 = s1 +
m−1∑
k=0

(−1)rk+1 ln

∣∣∣∣∣∣ak+ 1
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

])
+

b

1− a

∣∣∣∣∣∣ .
(3.10)

Also

sr+2 = s2 + f(2)

s2r+2 = sr+2 + f(r + 2) = s2 + f(2) + f(r + 2)

s3r+2 = s2r+2 + f(2r + 2) = s2 + f(2) + f(r + 2) + f(2r + 2)

s4r+2 = s3r+2 + f(3r + 2) = s2 + f(2) + f(r + 2) + f(2r + 2) + f(3r + 2)
...

so, for n = mr + 2, m = 1, 2, 3, ...

sn = smr+2 = s2 + f(2) + f(r + 2) + f(2r + 2) + · · ·+ f
(
(m− 1)r + 2

)
= s2 +

m−1∑
k=0

f(kr + 2)

but

f(kr + 2) = (−1)kr+2 ln

∣∣∣∣∣∣a kr+2
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2j(kr + 2)π

r
+ c2j+1 sin

2j(kr + 2)π

r

])
+

b

1− a

∣∣∣∣∣∣
= (−1)kr+2 ln

∣∣∣∣∣∣ak+ 2
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

4jπ

r
+ c2j+1 sin

4jπ

r

])
+

b

1− a

∣∣∣∣∣∣
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hence,

smr+2 = s2+
m−1∑
k=0

(−1)kr+2 ln

∣∣∣∣∣∣ak+ 2
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

4jπ

r
+ c2j+1 sin

4jπ

r

])
+

b

1− a

∣∣∣∣∣∣ .
(3.11)

Recursively up to n = mr + (r − 1), m = 1, 2, . . . , we get

sn = smr+(r−1) = s2 +
m−1∑
k=0

f
(
kr + (r − 1)

)
and

f
(
kr + (r − 1)

)
= (−1)kr+(r−1) ln

∣∣∣∣a kr+(r−1)
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2j
(
kr + (r − 1)

)
π

r

+c2j+1 sin
2j
(
kr + (r − 1)

)
π

r

])
+

b

1− a

∣∣∣∣
= (−1)kr+(r−1) ln

∣∣∣∣ak+ r−1
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 1)jπ

r

+c2j+1 sin
2(r − 1)jπ

r

])
+

b

1− a

∣∣∣∣
hence,

smr+(r−1) = s(r−1) +
m−1∑
k=0

(−1)kr+(r−1) ln

∣∣∣∣ak+ r−1
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 1)jπ

r

+c2j+1 sin
2(r − 1)jπ

r

])
+

b

1− a

∣∣∣∣. (3.12)

Now, from (3.9,3.10,3.11,3.12) we obtain, for n = mr + l, m = 1, 2, . . . and l =
0, 1, 2, . . . , r − 1

sn = smr+l = sl +
m−1∑
k=0

(−1)kr+l ln

∣∣∣∣ak+ l
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r

+c2j+1 sin
2ljπ

r

])
+

b

1− a

∣∣∣∣.
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The canonical coordinate

smr+l = (−1)mr+l ln |umr+l| , m = 1, 2, 3, . . . and l = 1, 2, . . . , (r − 1)

which implies

umr+l = exp
(
(−1)mr+lsmr+l

)
= u

(−1)mr
l

m−1∏
k=0

(
ak+

l
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r
+ c2j+1 sin

2ljπ

r

])
+

b

1− a

)(−1)r(k+m)

(3.13)

Now, to determine the forbidden set. From(3.20), n = mr + l

un = umr+l = u
(−1)mr
l

m−1∏
k=0

(
ak+

l
r

(
c1+

r−1
2∑
j=1

[
c2j cos

2ljπ

r
+c2j+1 sin

2ljπ

r

])
+

b

1− a

)(−1)r(k+m)

let

fl(m, k) =

(
ak+

l
r

(
c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r
+ c2j+1 sin

2ljπ

r

])
+

b

1− a

)(−1)r(k+m)

then
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fl(m, k) =

(
ak+

l
r

([
1

∆

r−1∑
t=0

(−1)t
( 1

utut+r
− b

1− a
)
a−

t
r∆t1

]

+

r−1
2∑
j=1

[
1

∆

r−1∑
t=0

(−1)t+1
( 1

utut+r
− b

1− a
)
a−

t
r∆t(2j)

]
cos

2jlπ

r

+

r−1
2∑
j=1

[
1

∆

r−1∑
t=0

(−1)t
( 1

utut+r
− b

1− a
)
a−

t
r∆t(2j+1)

]
sin

2jlπ

r

)
+

b

1− a

)(−1)3(k+m)

=

(
r−1∑
t=0

1

utut+r
ak+

l−t
r

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=1

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r

)

− b

1− a

r−1∑
t=0

(
ak+

l−t
r

1

∆
(−1)t∆t1 + ak+

l−t
r

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+ ak+
l−t
r

r−1
2∑
j=1

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r
− 1

))(−1)3(k+m)

(3.14)
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=

(
r−1∑
t=0

u0u1u2 . . . u2r−1(1− a)/utut+r
u0u1u2 . . . u2r−1(1− a)

ak+
l−t
r

(
1

∆
(−1)t∆t1

+

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=1

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r

)

− u0u1u2 . . . u2r−1b

u0u1u2 . . . u2r−1(1− a)

r−1∑
t=0

(
ak+

l−t
r

1

∆
(−1)t∆t1

+ ak+
l−t
r

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+ ak+
l−t
r

r−1
2∑
j=0

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r
− 1

))(−1)3(k+m)

(3.15)

Now, we have the following

1. if k+m = even number for some m and k, from (3.15) we have fl(m, k) is defined
where

u0u1u2 . . . u2r−1 6= 0

2. if k+m = odd number for some m and k, from (3.14) we have fl(m, k) is undefined
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when

0 =
r−1∑
t=0

1

utut+r
ak+

l−t
r

(
1

∆
(−1)t∆1t +

r−1
2∑
j=1

1

∆
(−1)t+1∆(2j)t cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t∆(2j+1)t sin

2jlπ

r

)

− b

1− a

r−1∑
t=0

(
ak+

l−t
r

1

∆
(−1)t∆1t + ak+

l−t
r

r−1
2∑
j=1

1

∆
(−1)t+1∆(2j)t cos

2jlπ

r

+ ak+
l−t
r

r−1
2∑
j=0

1

∆
(−1)t∆(2j+1)t sin

2jlπ

r
− 1

)

=
r−1∑
t=0

1

utut+r
ξtk −

b

1− a
ξk

where

ξltk = ak+
l−t
r

(
1

∆
(−1)t∆1t +

r−1
2∑
j=1

1

∆
(−1)t+2j+1∆(2j)t cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t+2j∆(2j+1)t sin

2jlπ

r

)

ξlk =
r−1∑
t=0

(
ak+

l−t
r

1

∆
(−1)t∆1t + ak+

l−t
r

r−1
2∑
j=1

1

∆
(−1)t+2j+1∆(2j)t cos

2jlπ

r

+ ak+
l−t
r

r−1
2∑
j=0

1

∆
(−1)t+2j∆(2j+1)t sin

2jlπ

r
− 1

)

Theorem 3.1.1. let u0, u1, u2, . . . , u2r−1 be given real number such that u0u1u2 . . . u2r−1 6=
0 and let a 6= 1. The forbidden set F of the difference equation (3.1) is given by
F = F0

⋃
F1
⋃
, . . . ,F r−1 where

F l =
∞⋃
k=1

{ r−1∑
t=0

( 1

utut+r
ξltk −

b

1− a
ξlk

)
= 0

}
, l = 0, 1, . . . , r − 1
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3.1.2 The Case a = 1

The characteristic equation is
λr − a = 0.

So the characteristic roots are

λ1 = 1,

λ2 = ei
2π
r ,

λ3 = ei
4π
r ,

...

λr−1 = ei
2(r−2)π

r

λr = ei
2(r−1)π

r

So the soluation of the homogeneous equation is

zh = c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

]

where c1, c2j and c2j+1 are constants, j = 1, 2, . . . , r−1
2

. The particular solution is

zp =
b

r
n

thus, the solution of equation (3.8) is

zn = zh + zp

= c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

]
+
b

r
n
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Given initial values z0, z1, . . . , zr−1, the constants c1, c2, . . . , cr satisfy the following sys-
tem of equations

z0 = c1 +

r−1
2∑
j=1

c2j

z1 −
b

r
= c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

]

z2 −
2b

r
= c1 +

r−1
2∑
j=1

[
c2j cos

4jπ

r
+ c2j+1 sin

4jπ

r

]
...

zr−2 −
(r − 2)b

r
= c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 2)jπ

r
+ c2j+1 sin

2(r − 2)jπ

r

]

zr−1 −
(r − 1)b

r
= c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 1)jπ

r
+ c2j+1 sin

2(r − 1)jπ

r

]

then

c1 =
∆1

∆
, c2 =

∆2

∆
, c3 =

∆3

∆
, . . . , cr−1 =

∆r−1

∆
and cr =

∆r

∆
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such that

∆ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 1 0

1 cos 2π
r

sin 2π
r

. . . cos (r−1)π
r

sin (r−1)π
r

1 cos 4π
r

sin 4π
r

. . . cos 2(r−1)π
r

sin 2(r−1)π
r

...
. . .

...

1 cos 2(r−2)π
r

sin 2(r−2)π
r

. . . cos (r−2)(r−1)π
r

sin (r−2)(r−1)π
r

1 cos 2(r−1)π
r

sin 2(r−1)π
r

. . . cos (r−1)2π
r

sin (r−1)2π
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∆1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

z0 1 0 . . . 1 0

z1 − b
r

cos 2π
r

sin 2π
r

. . . cos (r−1)π
r

sin (r−1)π
r

z2 − 2b
r

cos 4π
r

sin 4π
r

. . . cos 2(r−1)π
r

sin 2(r−1)π
r

...
. . .

...

zr−2 − (r−2)b
r

cos 2(r−2)π
r

sin 2(r−2)π
r

. . . cos (r−2)(r−1)π
r

sin (r−2)(r−1)π
r

zr−1 − (r−1)b
r

cos 2(r−1)π
r

sin 2(r−1)π
r

. . . cos (r−1)2π
r

sin (r−1)2π
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z0∆01 −

(
z1 −

b

r

)
∆11 +

(
z2 −

2b

r

)
∆21 − · · · −

(
zr−2 −

(r − 2)b

r

)
∆(r−2)1

+
(
zr−1 −

(r − 1)b

r

)
∆(r−1)1

such that ∆j1 is the minor of an element (j + 1, 1) of ∆1, j = 0, 1, . . . , r − 1.

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 z0 0 . . . 1 0

1 z1 − b
r

sin 2π
r

. . . cos (r−1)π
r

sin (r−1)π
r

1 z2 − 2b
r

sin 4π
r

. . . cos 2(r−1)π
r

sin 2(r−1)π
r

...
. . .

...

1 zr−2 − (r−2)b
r

sin 2(r−2)π
r

. . . cos (r−2)(r−1)π
r

sin (r−2)(r−1)π
r

1 zr−1 − (r−1)b
r

sin 2(r−1)π
r

. . . cos (r−1)2π
r

sin (r−1)2π
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −z0∆02 +

(
z1 −

b

r

)
∆12 −

(
z2 −

2b

r

)
∆22

+ · · ·+
(
zr−2 −

(r − 2)b

r

)
∆(r−2)2 −

(
zr−1 −

(r − 1)b

r

)
∆(r−1)2
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such that ∆j2 is the minor of an element (j + 1, 2) of ∆2 j = 0, 1, . . . , r − 1.

∆3 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 z0 . . . 1 0

1 cos 2π
r

z1 − b
r

. . . cos (r−1)π
r

sin (r−1)π
r

1 cos 4π
r

z2 − 2b
r

. . . cos 2(r−1)π
r

sin 2(r−1)π
r

...
. . .

...

1 cos 2(r−2)π
r

zr−2 − (r−2)b
r

. . . cos (r−2)(r−1)π
r

sin (r−2)(r−1)π
r

1 cos 2(r−1)π
r

zr−1 − (r−1)b
r

a−
r−1
r . . . cos (r−1)2π

r
sin (r−1)2π

r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z0∆03 −

(
z1 −

b

r

)
∆13 +

(
z2 −

2b

r

)
∆23

− · · · −
(
zr−2 −

(r − 2)b

r

)
∆(r−2)3 +

(
zr−1 −

(r − 1)b

r

)
∆(r−1)3

such that ∆j3 is the minor of an element (j + 1, 3) of ∆3, j = 0, 1, . . . , r − 1.

∆r−1 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . z0 0

1 cos 2π
r

sin 2π
r

. . . z1 − b
r

sin (r−1)π
r

1 cos 4π
r

sin 4π
r

. . . z2 − 2b
r

sin 2(r−1)π
r

...
. . .

...

1 cos 2(r−2)π
r

sin 2(r−2)π
r

. . . zr−2 − (r−2)b
r

sin (r−2)(r−1)π
r

1 cos 2(r−1)π
r

sin 2(r−1)π
r

. . . zr−1 − (r−1)b
r

sin (r−1)2π
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= −z0∆0(r−1) +

(
z1 −

b

r

)
∆1(r−1) −

(
z2 −

2b

r

)
∆2(r−1)

+ · · ·+
(
zr−2 −

(r − 2)b

r

)
∆(r−2)(r−1) −

(
zr−1 −

(r − 1)b

r

)
∆(r−1)(r−1)
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such that ∆j(r−1) is the minor of an element (j+1, (r−1)) of ∆r−1, j = 0, 1, . . . , r−1.

∆r =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1 0 . . . 1 z0
1 cos 2π

r
sin 2π

r
. . . cos (r−1)π

r
z1 − b

r

1 cos 4π
r

sin 4π
r

. . . cos 2(r−1)π
r

z2 − 2b
r

...
. . .

...

1 cos 2(r−2)π
r

sin 2(r−2)π
r

. . . cos (r−2)(r−1)π
r

zr−2 − (r−2)b
r

1 cos 2(r−1)π
r

sin 2(r−1)π
r

. . . cos (r−1)2π
r

zr−1 − (r−1)b
r

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= z0∆0r −

(
z1 −

b

r

)
∆1r +

(
z2 −

2b

r

)
∆2r

− · · · −
(
zr−2 −

(r − 2)b

r

)
∆(r−2)r −

(
zr−1 −

(r − 1)b

r

)
∆(r−1)r

such that ∆jr is the minor of an element (j + 1, r) of ∆r, j = 0, 1, . . . , r − 1.

So

cx =
∆x

∆

=
1

∆

r−1∑
t=0

(−1)t+x+1
( 1

utut+r
− tb

r

)
∆tx , x = 1, 2, . . . , r

thus,

c2j =
1

∆

r−1∑
t=0

(−1)t+1
( 1

utut+r
− tb

r

)
∆t(2j)

c2j+1 =
1

∆

r−1∑
t=0

(−1)t
( 1

utut+r
− tb

r

)
∆t(2j+1)

The invariant vn is given by

vn =
1

zn

=
1

c1 +
∑ r−1

2
j=1

[
c2j cos 2jnπ

r
+ c2j+1 sin 2jnπ

r

]
+ b

r
n

= un+run
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and so

un+r =
1(

c1 +
∑ r−1

2
j=1

[
c2j cos 2jnπ

r
+ c2j+1 sin 2jnπ

r

]
+ b

r
n
)
un
.

Using the canonical coordinate,

sn =

∫
dun

(−1)nun

= (−1)n ln |un|
so

sn+r − sn = (−1)n ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

]
+
b

r
n

∣∣∣∣∣∣
which is a rth order non homogeneous difference equation that can be solved recursively.
Let s0, s1, . . . , sr−1 be given and let

f(n) = (−1)n ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jnπ

r
+ c2j+1 sin

2jnπ

r

]
+
b

r
n

∣∣∣∣∣∣
then

sn+r = sn + f(n)

sr = s0 + f(0)

s2r = sr + f(r) = s0 + f(0) + f(r)

s3r = s2r + f(2r) = s0 + f(0) + f(r) + f(2r)

s4r = s3r + f(3r) = s0 + f(0) + f(r) + f(2r) + f(3r)
...

so, for n = mr, m = 1, 2, 3, ...

sn = smr = s0 + f(0) + f(r) + f(2r) + f(3r) + ...+ f
(
(m− 1)r

)
= s0 +

m−1∑
k=0

f(kr)
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but

f(kr) = (−1)kr ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jkrπ

r
+ c2j+1 sin

2jkrπ

r

]
+
b

r
kr

∣∣∣∣∣∣
= (−1)kr ln

∣∣∣∣∣∣ak(c1 +

r−1
2∑
j=1

c2j
)

+ bk

∣∣∣∣∣∣
hence,

smr = s0 +
m−1∑
k=0

(−1)kr ln

∣∣∣∣∣∣ak(c1 +

r−1
2∑
j=1

c2j
)

+ bk

∣∣∣∣∣∣ . (3.16)

Also

sr+1 = s1 + f(1)

s2r+1 = sr+1 + f(r + 1) = s1 + f(1) + f(r + 1)

s3r+1 = s2r+1 + f(2r + 1) = s1 + f(1) + f(r + 1) + f(2r + 1)

s4r+1 = s3r+1 + f(3r + 1) = s1 + f(1) + f(r + 1) + f(2r + 1) + f(3r + 1)
...

so, for n = mr + 1, m = 1, 2, 3, ...

sn = smr+1 = s1 + f(1) + f(r + 1) + f(2r + 1) + · · ·+ f
(
(m− 1)r + 1

)
= s1 +

m−1∑
k=0

f(kr + 1)

but

f(rk + 1) = (−1)rk+1 ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2j(rk + 1)π

r
+ c2j+1 sin

2j(rk + 1)π

r

]
+
b

r
(rk + 1)

∣∣∣∣∣∣
= (−1)rk+1 ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

]
+ bk +

b

r

∣∣∣∣∣∣
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hence,

smr+1 = s1+
m−1∑
k=0

(−1)rk+1 ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

]
+ bk +

b

r

∣∣∣∣∣∣ . (3.17)

Also

sr+2 = s2 + f(2)

s2r+2 = sr+2 + f(r + 2) = s2 + f(2) + f(r + 2)

s3r+2 = s2r+2 + f(2r + 2) = s2 + f(2) + f(r + 2) + f(2r + 2)

s4r+2 = s3r+2 + f(3r + 2) = s2 + f(2) + f(r + 2) + f(2r + 2) + f(3r + 2)
...

so, for n = mr + 2, m = 1, 2, 3, ...

sn = smr+2 = s2 + f(2) + f(r + 2) + f(2r + 2) + · · ·+ f
(
(m− 1)r + 2

)
= s2 +

m−1∑
k=0

f(kr + 2)

but

f(kr + 2) = (−1)kr+2 ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2j(kr + 2)π

r
+ c2j+1 sin

2j(kr + 2)π

r

]
+
b

r
(kr + 2)

∣∣∣∣∣∣
= (−1)kr ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

]
+ bk +

2b

r

∣∣∣∣∣∣
hence,

smr+2 = s2 + (−1)kr ln

∣∣∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2jπ

r
+ c2j+1 sin

2jπ

r

]
+ bk +

2b

r

∣∣∣∣∣∣ . (3.18)

Recursively up to n = mr + (r − 1), m = 1, 2, . . . , we get

sn = smr+(r−1) = s2 +
m−1∑
k=0

f
(
kr + (r − 1)

)
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and

f
(
kr + (r − 1)

)
= (−1)kr+(r−1) ln

∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 1)jπ

r

+c2j+1 sin
2(r − 1)jπ

r

]
+ bk +

(r − 1)b

r

∣∣∣∣
hence,

smr+(r−1) = (−1)kr+(r−1) ln

∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2(r − 1)jπ

r

+c2j+1 sin
2(r − 1)jπ

r

]
+ bk +

(r − 1)b

r

∣∣∣∣ (3.19)

Now, from (3.16,3.17,3.18,3.19) we obtain, for n = mr + l, m = 1, 2, . . . and l =
0, 1, 2, . . . , r − 1

sn = smr+l = sl +
m−1∑
k=0

(−1)kr+l ln

∣∣∣∣c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r

+c2j+1 sin
2ljπ

r

]
+ bk +

lb

r

∣∣∣∣.
The canonical coordinate

smr+l = (−1)mr+l ln |umr+l| , m = 1, 2, 3, . . . and l = 1, 2, . . . , (r − 1)

which implies

umr+l = exp
(
(−1)mr+lsmr+l

)
= u

(−1)mr
l

m−1∏
k=0

(
c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r
+ c2j+1 sin

2ljπ

r

]
+ bk +

lb

r

)(−1)r(k+m)

(3.20)

Now, to determine the forbidden set, from(3.20), n = mr + l, l = 0, 1, . . . , r − 1

un = umr+l = u
(−1)mr
l

m−1∏
k=0

(
c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r
+ c2j+1 sin

2ljπ

r

]
+ bk +

lb

r

)(−1)r(k+m)
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let

fl(m, k) =

(
c1 +

r−1
2∑
j=1

[
c2j cos

2ljπ

r
+ c2j+1 sin

2ljπ

r

]
+ bk +

lb

r

)(−1)r(k+m)

then

fl(m, k) =

([
1

∆

r−1∑
t=0

(−1)t
( 1

utut+r
− tb

r

)
∆t1

]

+

r−1
2∑
j=1

[
1

∆

r−1∑
t=0

(−1)t+1
( 1

utut+r
− tb

r

)
∆t(2j)

]
cos

2jlπ

r

+

r−1
2∑
j=1

[
1

∆

r−1∑
t=0

(−1)t
( 1

utut+r
− tb

r

)
∆t(2j+1)

]
sin

2jlπ

r
+
kbr + lb

r

)(−1)3(k+m)

=

(
r−1∑
t=0

1

utut+r

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=1

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r

)

−1

r

r−1∑
t=0

tb

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=1

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r
− kbr − lb

))(−1)3(k+m)

(3.21)
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=

(
r−1∑
t=0

u0u1u2 . . . u2r−1r/utut+r
u0u1u2 . . . u2r−1r

(
1

∆
(−1)t∆t1

+

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=1

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r

)

− u0u1u2 . . . u2r−1
u0u1u2 . . . u2r−1r

r−1∑
t=0

(
1

∆
(−1)t∆t1

+

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r
− kbr − lb

))(−1)3(k+m)

(3.22)

such that u0u1u2 . . . u2r−1r 6= 0. We have the following results,

1. If k+m = even number for some m and k, from (3.22) we have fl(m, k) is defined
where

u0u1u2 . . . u2r−1 6= 0

2. If k+m = odd number for some m and k, from (3.21) we have fl(m, k) is undefined
when
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0 =
r−1∑
t=0

1

utut+r

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r

)

−1

r

r−1∑
t=0

tb

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t∆t(2j+1) sin

2jlπ

r
− kbr − lb

)

=
r−1∑
t=0

1

utut+r
ξltk −

1

r
ξlk

where

ξltk =

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+2j+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t+2j∆t(2j+1) sin

2jlπ

r

)

ξlk =
r−1∑
t=0

tb

(
1

∆
(−1)t∆t1 +

r−1
2∑
j=1

1

∆
(−1)t+2j+1∆t(2j) cos

2jlπ

r

+

r−1
2∑
j=0

1

∆
(−1)t+2j∆t(2j+1) sin

2jlπ

r
− kbr − lb

)

Theorem 3.1.2. Let u0, u1, u2, . . . , u2r−1 be given real numbers such that u0u1u2 . . . u2r−1 6=
0 and let a 6= 1. Then the forbidden set F of the difference equation (3.1)is given by
F = F0

⋃
F1
⋃
· · ·
⋃
F r−1 where

F l =
∞⋃
k=1

{ r−1∑
t=0

( 1

utut+r
ξtk −

1

r
ξk

)
= 0

}
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3.2 Dynamics

In this section we study the dynamics of difference equation (3.1), we concentrate on
the equilibrium points and asymptotic stability of this equilibrium points.

3.2.1 Equilibrium points and stability

We investigate the equilibrium points of the difference equation (3.1) where a, b are
real numbers such that a < 1 and the initial condition u0, u1, . . . , un+2i+1 are also real
numbers.

Definition 9. [7] The equilibrium point ū of the difference equation

un+k = f(u0, u1, . . . , un+k−1), n = 0, 1, . . . (3.23)

is the point that satisfies the condition

ū = f(ū, ū, . . . , ū).

The equilibrium point of our difference equation (3.1) is

ū =
ū

a+ bū2

then,

ū = 0 or ū = ±
√

1− a
b

,

Definition 10. [7] Let ū be an equilibrium point of equation (3.23)

(a) The equilibrium ū is called locally stable if for every ε > 0, there exists δ > 0 such
that if {un}∞n=0 is a solution of equation (3.23) with

|u0 − ū|+ · · ·+ |un+k−1 − ū| < δ

then
|un − ū| < ε, for all n ≥ 0.

(b) The equilibrium ū is called locally asymptotically stable if it is locally stable and
if there exists γ > 0 such that if {un}∞n=0 is a solution of equation (3.23) with

|u0 − ū|+ . . .+ |un+k−1 − ū| < γ

then
lim
n→∞

un = ū
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(c) The equilibrium ū is called a global attractor if for every solution {un}∞n=0 equation
(3.23), we have

lim
n→∞

un = ū

(d) The equilibrium ū is called global asymptotically stable if it is locally stable and is
a global attractor .

(e) The equilibrium ū is unstable if it is not stable.

(f) The equilibrium point ū is a source or a repeller, if there exists r > 0 such that for
every solution {un}∞n=0 equation (3.23), with

|u0 − ū|+ |u1 − ū|+ · · ·+ |un+k−1 − ū| < r

there exists N ≥ 1 such that
|uN − ū| ≥ r

Clearly, a repeller is an unstable equilibrium.

3.2.2 Local Stability of The Equilibrium Points

To study the stability of the equilibrium points, we find the linearized equation of the
difference equation.

Definition 11. [7] The linearized equation of difference equation un+k = f(un+k−1, . . . , un),
of order k, about the equilibrium point x̄ is defined by the equation

un+k = ρ0zn+k−1 + ρ1zn+k−2 + · · ·+ ρk−1zn,

where

ρj =
∂f(ū, ū, . . . , ū)

∂un−j
, j = 0, 1, . . . , k − 1

Theorem 3.2.1. [7] Assume qj ∈ R, j = 0, a, . . . k − 1, then

k−1∑
j=0

|qj| < 1

is a sufficient condition for the asymptotic stability of the difference equation

zn+k + q1zn+k−1 + · · ·+ qkzn = 0, n = 0, 1, 2, . . .
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From previous definition, we find the linearization of our difference equation (3.1).
Consider

w(x, y) =
x

a+ byx
,

then

wx(x, y) =
a+ byx− byx

(a+ byx)2
=

a

(a+ byx)2
,

and

wy(x, y) =
−byx

(a+ byx)2

which implies

wx(ū, ū) =
a

(a+ bū2)2

and

wy(ū, ū) =
−bū2

(a+ bū2)2

The linearized equation is

zn+2(i+1) = wy(ū, ū)zn+i+1 + wx(ū, ū)zn

zn+2(i+1) =
−bū2

(a+ bū2)2
zn+i+1 +

a

(a+ bū2)2
zn

i.e.

zn+2(i+1) +
bū2

(a+ bū2)2
zn+i+1 −

a

(a+ bū2)2
zn = 0 (3.24)

Local Stability of The Zero Equilibrium Point

By substituting ū = 0 in the linearized equation (3.24), we get

zn+2(i+1) −
1

a
zn = 0.

By applying theorem (3.2.1) to the equation, we get∣∣∣∣1a
∣∣∣∣ < 1

is a sufficient for the asymptotically stable of the difference equation, then

a ∈ (−∞,−1) ∩ (1,∞)

but a < 1, thus
−∞ < a < −1
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Theorem 3.2.2. Assume that −∞ < a < −1, then the zero equilibrium point of
equation (3.1) is local asymptotically stable.

Local stability of the equilibrium point ū = +
√

1−a
b

By substituting ū =
√

1−a
b

in the linearized equation (3.24),we get

zn+2(i+1) + (1− a)zn+i+1 − azn = 0,

apply theorem (3.2.1) to the equation, we get

|1− a|+ |a| < 1

is a sufficient for the asymptotically stable of the difference equation. This sufficient
condition never hold for all a. By the same way, we get not satisfying sufficient condition
for the reminder negative equilibrium point.

3.3 The case i = 0

un+2 =
un

a+ bun+1un
= w(un, un+1), u0u1 6= 0. (3.25)

From previous chapter in example (11), the solution of equation (3.25) is

Case 1 : if a 6= 1

un = u
(−1)n
0

n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n

. (3.26)

Now, to determine the forbidden set. From(3.26)

un = u
(−1)n
0 ·

n−1∏
k=0

(
ak

1

u0u1
+ b

[
ak − 1

a− 1

])(−1)k+n

= u
(−1)n
0 ·

n−1∏
k=0

(
ak(a− 1) + bu0u1(a

k − 1)

u0u1(a− 1)

)(−1)k+n

let

f(n, k) =

(
ak(a− 1) + bu0u1(a

k − 1)

u0u1(a− 1)

)(−1)k+n
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so

un = u
(−1)n
0 ·

n−1∏
k=0

f(n, k), n = 2, 3, 4, ...

1. if k + n = even number then f(n, k) is defined when

u0u1 6= 0

2. if k + n = odd number them so f(n, k) is undefined when

ak(a− 1) + bu0u1(a
k − 1) = 0

so

u0u1 = −a
k(a− 1)

b(ak − 1)
.

Theorem 3.3.1. Let u0, u1 be given initial conditions such that u0u1 6= 0 and let a 6= 1.
The forbidden set F of the difference equation (3.25) is given by

F =
∞⋃
k=1

{
u0u1 = −a

k(a− 1)

b(ak − 1)

}
Case 2 : if a = 1

un = u
(−1)n
0

n−1∏
k=0

( 1

u0u1
+ bk

)(−1)k+n
.

To find the forbidden set. From (3.27)

un = u
(−1)n
0

n−1∏
k=0

( 1

u0u1
+ bk

)(−1)k+n
= u

(−1)n
0

n−1∏
k=0

(
1 + u0u1bk

u0u1

)(−1)k+n

let

f(n, k) =

(
1 + u0u1bk

u0u1

)(−1)k+n

so

un = u
(−1)n
0

n−1∏
k=0

f(n, k), n = 2, 3, 4, ...
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1. if k + n = even number then f(n, k) is defined where

u0u1 6= 0.

2. if k + n = odd number then f(n, k) is undefined when

1 + u0u1bk = 0

so

u0u1 = − 1

bk
.

Theorem 3.3.2. Let u0, u1 be given such that u0u1 6= 0 and let a = 1. The forbidden
set F of the difference equation (3.25)is given by

F =
∞⋃
k=1

{
u0u1 = − 1

bk

}

3.4 Special Case for i = 2

In this section, we find the exact solution and the forbidden set of the following 6th

order difference equation

un+6 =
un

a+ bun+3un
= w, u0u1u2u3u4u5 6= 0 (3.27)

Let us differentiate w with respect to un and un+3

∂w

∂un
=

a+ bunun+3 − bunun+3

(a+ bunun+3)2
=

a

(a+ bunun+3)2
.
u2n
u2n

=
aw2

u2n
,

∂w

∂un+3

=
−bu2n

(a+ bunun+3)2
= −bw2

and so

∂un+3

∂un
= − ∂w/∂un

∂w/∂un+3

= −aw
2/u2n
−bw2

=
a

bu2n
.

The linearized symmetry condition (LSC) is given by

Q(n+ 6, un+6)−
∂w

∂un+3

Q(n+ 3, un+3)−
∂w

∂un
Q(n, un) = 0
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Q(n+ 6, un+6) + bw2Q(n+ 3, un+3)−
aw2

u2n
Q(n, un) = 0.

Now, by applying the differential operator L to the previous equation, where

L =
∂

∂un
+
∂un+3

∂un

∂

∂un+3

we get

∂

∂un

(
Q(n+ 6, un+6)

)
+
∂un+3

∂un

∂

∂un+3

(
Q(n+ 6, un+6)

)

=
∂

∂un

(
− bw2Q(n+ 3, un+3) +

aw2

u2n
Q(n, un)

)
+

a

bu2n

∂

∂un+3

(
− bw2Q(n+ 3, un+3) +

aw2

u2n
Q(n, un)

)

which implies

aw2

u2n
Q′(n, un)− 2aw2

u3n
Q(n, un)− aw2

u2n
Q′(n+ 3, un+3) = 0

multiply this equation by u2n
aw2

Q′(n, un)− 2

un
Q(n, un)−Q′(n+ 3, un+3) = 0 (3.28)

differentiate the last equation with respect to un keeping un+3 fixed

Q′′(n, un)− 2

un
Q′(n, un) +

2

u2n
Q(n, un) = 0

again multiply by u2n

u2nQ
′′(n, un)− 2unQ

′(n, un) + 2Q(n, un) = 0

which is an Euler Equation, whose solution is

Q(n, un) = αnu
2
n + βnun
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thus
Q′(n, un) = 2αnun + βn

substitute into equation (3.28)

0 = 2αnun + βn − 2αnun − 2βn − 2αn+3un+3 − βn+3

= −βn − βn+3 − 2αn+3un+3

comparing both sides of the last equation, we get

αn+3 = 0 and so αn = 0

and we have also
βn+3 + βn = 0

which is a third order linear difference equation, whose solution is

βn = c1(−1)n + c2

(
1 +
√

3i

2

)n
+ c3

(
1−
√

3i

2

)n
where c1, c2, c3 are constants. Suppose that c2 = c3 = 0 and c1 = 1 so βn = (−1)n,
which implies

Q(n, un) = (−1)nun.

We want to find the invariant using,

dun
(−1)nun

=
dun+3

(−1)n+3un+3

:=
dvn
0
,

take dun
(−1)nun = dun+3

(−1)n+3un+3
invariants,

so
ln | un |= − ln | un+3 | +c, then c = ln | unun+3 |

where c is constant, so
k1 = unun+3 where k1 = ec,

we also have
dun
un

:=
dvn
0

and so
vn = k, such that k = f(k1)
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where k, k1 are constants. Let f(k1) = k1, then

vn = un+3un,

and

vn+3 = un+6un+3 =
unun+3

a+ bunun+3

=
vn

a+ bvn
.

Now, we want to solve this equation

vn+3 =
vn

a+ bvn
(3.29)

so
1

vn+3

=
a

vn
+ b, (3.30)

let

zn =
1

vn
,

this substitution converts equation (3.27) to the following third order linear equation

zn+3 − azn − b = 0 (3.31)

so
zn+3 − azn = b. (3.32)

3.4.1 The Case a 6= 1

The characteristic equation of the homogeneous equation

zn+3 − azn = 0 (3.33)

is
λ3 − a = 0.

The roots of the last equation are

µ1 = (a)
1
3 ei

2(0)π
3 = (a)

1
3 ,real root,

µ2 = (a)
1
3 ei

2(1)π
3 = (a)

1
3 ei

2π
3

µ3 = (a)
1
3 ei

2(2)π
3 = (a)

1
3 ei

4π
3
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where (a)
1
3 is the real positive third root of a. So the solution of the homogeneous

equation (3.33) is

zh = c1µ
n
1 + ć2µ

n
2 + ć3µ

n
3

= c1(a)
n
3 + ć2

(
(a)

1
3 ei

2π
3

)n
+ ć3

(
(a)

1
3 ei

4π
3

)n
= c1(a)

n
3 + ć2

(
(a)

n
3 (cos

2nπ

3
+ i sin

2nπ

3
)
)

+ ć3
(
(a)

1
3 (cos

2nπ

3
− i sin

2nπ

3
)
)

= a
n
3

(
c1 + c2 cos

2nπ

3
+ c3 sin

2nπ

3

)
where c1, ć2, ć3 are constants and

c2 = ć2 + ć3, c3 = i(ć2 − ć3)

to find the particular solution,zp, let

zp = c,

substitute into equation (3.32), we obtain

c− ac = b

so

c =
b

1− a
such that b 6= 0, and so

zp =
b

1− a
thus, the solution of equation (3.31) is

zn = zh + zp

= a
n
3

(
c1 + c2 cos

2nπ

3
+ c3 sin

2nπ

3

)
+

b

1− a
Given initial values z0, z1, z2 , the constants c1, c2, c3 satisfy the following system of

equations (
z0 −

b

1− a
)

= c1 + c2(
z0 −

b

1− a
)
a−

1
3 = c1 + c2 cos

2π

3
+ c3 sin

2π

3(
z0 −

b

1− a
)
a−

2
3 = c1 + c2 cos

4π

3
+ c3 sin

4π

3
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then

c1 =
∆1

∆
, c2 =

∆2

∆
and c3 =

∆3

∆

such that

∆ =

∣∣∣∣∣∣
1 1 0
1 cos 2π

3
sin 2π

3

1 cos 4π
3

sin 4π
3

∣∣∣∣∣∣ =

∣∣∣∣∣∣
1 1 0

1 −1
2

√
3
2

1 −1
2

−
√
3

2

∣∣∣∣∣∣ =
3
√

3

2

∆1 =

∣∣∣∣∣∣∣
(
z0 − b

1−a

)
1 0(

z1 − b
1−a

)
a−

1
3 cos 2π

3
sin 2π

3(
z2 − b

1−a

)
a−

2
3 cos 4π

3
sin 4π

3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
(
z0 − b

1−a

)
1 0(

z1 − b
1−a

)
a−

1
3 −1

2

√
3
2(

z2 − b
1−a

)
a−

2
3 −1

2
−
√
3
2

∣∣∣∣∣∣∣
T

=

∣∣∣∣∣∣
(
z0 − b

1−a

) (
z1 − b

1−a

)
a−

1
3

(
z2 − b

1−a

)
a−

2
3

1 −1
2

−1
2

0
√
3
2

−
√
3
2

∣∣∣∣∣∣
= z0

√
3

2
+ z1

(
−
√

3

2
a−

1
3

)
+ z2

(√3

2
a−

2
3

)
− b

1− a

(√
3

2
−
√

3

2
a−

1
3 +

√
3

2
a−

2
3

)
=

1

u0u3

√
3

2
+

1

u1u4

(
−
√

3

2
a−

1
3

)
+

1

u2u5

(√3

2
a−

2
3

)
− b

1− a

(√
3

2
−
√

3

2
a−

1
3 +

√
3

2
a−

2
3

)
so

c1 =
∆1

∆

=

1
u0u3

√
3
2

+ 1
u1u4

(
−
√
3
2
a−

1
3

)
+ 1

u2u5

(√
3
2
a−

2
3

)
− b

1−a

(
√
3
2
−
√
3
2
a−

1
3 +

√
3
2
a−

2
3

)
3
√

3/2

=
1

u0u3

1

3
+

1

u1u4

(
− 1

3
a−

1
3

)
+

1

u2u5

(1

3
a−

2
3

)
− b

1− a

(
1

3
− 1

3
a−

1
3 +

1

3
a−

2
3

)
=

1

3

[
1

u0u3
+

1

u1u4

(
− a−

1
3

)
+

1

u2u5

(
a−

2
3

)
− b

1− a

(
1− a−

1
3 + a−

2
3

)]
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∆2 =

∣∣∣∣∣∣∣
1

(
z0 − b

1−a

)
0

1
(
z1 − b

1−a

)
a−

1
3 sin 2π

3

1
(
z2 − b

1−a

)
a−

2
3 sin 4π

3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1

(
z0 − b

1−a

)
0

1
(
z1 − b

1−a

)
a−

1
3

√
3
2

1
(
z2 − b

1−a

)
a−

2
3 −

√
3
2

∣∣∣∣∣∣∣
T

=

∣∣∣∣∣∣
1 1 1(

z0 − b
1−a

) (
z1 − b

1−a

)
a−

1
3

(
z2 − b

1−a

)
a−

2
3

0
√
3
2

−
√
3
2

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
(
z0 − b

1−a

) (
z1 − b

1−a

)
a−

1
3

(
z2 − b

1−a

)
a−

2
3

1 1 1

0
√
3
2

−
√
3

2

∣∣∣∣∣∣
= z0

√
3 + z1

(
−
√

3

2
a−

1
3

)
+ z2

(
−
√

3

2
a−

2
3

)
− b

1− a

(√
3−
√

3

2
a−

1
3 −
√

3

2
a−

2
3

)
=

1

u0u3

√
3 +

1

u1u4

(
−
√

3

2
a−

1
3

)
+

1

u2u5

(
−
√

3

2
a−

2
3

)
− b

1− a

(√
3−
√

3

2
a−

1
3 −
√

3

2
a−

2
3

)

so

c2 =
∆2

∆

1
u0u3

√
3 + 1

u1u4

(
−
√
3
2
a−

1
3

)
+ 1

u2u5

(
−
√
3
2
a−

2
3

)
− b

1−a

(√
3−

√
3
2
a−

1
3 −

√
3
2
a−

2
3

)
3
√

3/2

=
1

3

[
2

u0u3
+

1

u1u4

(
− a−

1
3

)
+

1

u2u5

(
− a−

2
3

)
− b

1− a

(
2− a−

1
3 − a−

2
3

)]
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and

∆3 =

∣∣∣∣∣∣∣
1 1

(
z0 − b

1−a

)
1 cos 2π

3

(
z1 − b

1−a

)
a−

1
3

1 cos 4π
3

(
z2 − b

1−a

)
a−

2
3

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1 1

(
z0 − b

1−a

)
1 −1

2

(
z1 − b

1−a

)
a−

1
3

1 −1
2

(
z2 − b

1−a

)
a−

2
3

∣∣∣∣∣∣∣
T

=

∣∣∣∣∣∣
1 1 1
1 −1

2
−1

2(
z0 − b

1−a

) (
z1 − b

1−a

)
a−

1
3

(
z2 − b

1−a

)
a−

2
3

∣∣∣∣∣∣
= −

∣∣∣∣∣∣
(
z0 − b

1−a

) (
z1 − b

1−a

)
a−

1
3

(
z2 − b

1−a

)
a−

2
3

1 −1
2

−1
2

1 1 1

∣∣∣∣∣∣
= z1

(3

2
a−

1
3

)
+ z2

(
− 3

2
a−

2
3

)
− b

1− a

(
3

2
a−

1
3 − 3

2
a−

2
3

)
=

1

u1u4

(3

2
a−

1
3

)
+

1

u2u5

(
− 3

2
a−

2
3

)
− b

1− a

(
3

2
a−

1
3 − 3

2
a−

2
3

)

so

c3 =
∆3

∆

=

1
u1u4

(
3
2
a−

1
3

)
+ 1

u2u5

(
− 3

2
a−

2
3

)
− b

1−a

(
3
2
a−

1
3 − 3

2
a−

2
3

)
3
√

3/2

=
1√
3

[
1

u1u4

(
a−

1
3

)
+

1

u2u5

(
− a−

2
3

)
− b

1− a

(
a−

1
3 − a−

2
3

)]
Then, we have

vn =
1

zn

=
1

a
n
3

(
c1 + c2 cos 2nπ

3
+ c3 sin 2nπ

3

)
+ b

1−a
= unun+3

and so

un+3 =
1

un
(
a
n
3

[
c1 + c2 cos 2nπ

3
+ c3 sin 2nπ

3

]
+ b

1−a

) .
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To solve the last equation we need to obtain the canonical coordinate,

sn =

∫
dun

(−1)nun

= (−1)n ln |un|
so

sn+3 − sn = (−1)n+3 ln |un+3| − (−1)n ln |un|
= (−1)n+1[ln |un+3|+ ln |un|]
= (−1)n+1 ln |un+3un|
= (−1)n+1 ln |vn|

= (−1)n+1 ln

∣∣∣∣∣ 1

a
n
3

(
c1 + c2 cos 2nπ

3
+ c3 sin 2nπ

3

)
+ b

1−a

∣∣∣∣∣
= (−1)n+2 ln

∣∣∣∣an3 (c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3

)
+

b

1− a

∣∣∣∣
and so

sn+3 − sn = (−1)n ln

∣∣∣∣an3 (c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3

)
+

b

1− a

∣∣∣∣
which is a third order non homogeneous difference equation that can be solved recur-
sively. Let s0, s1 and s2 be given and let

f(n) = (−1)n ln

∣∣∣∣an3 (c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3

)
+

b

1− a

∣∣∣∣
then

sn+3 = sn + f(n)

s3 = s0 + f(0)

s6 = s3 + f(3) = s0 + f(0) + f(3)

s9 = s6 + f(6) = s0 + f(0) + f(3) + f(6)

s12 = s9 + f(9) = s0 + f(0) + f(3) + f(6) + f(9)
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so, for n = 3m, m = 1, 2, 3, ...

sn = s0 + f(0) + f(3) + f(6) + f(9) + ...+ f(n− 3)

= s0 +

n−3
3∑

k=0

f(3k)

hence,

s3m = s0 +
m−1∑
k=0

f(3k)

but

f(3k) = (−1)3k ln

∣∣∣∣a 3k
3

(
c1 + c2 cos

2(3k)π

3
+ c3 sin

2(3k)π

3

)
+

b

1− a

∣∣∣∣
= (−1)3k ln

∣∣∣∣ak(c1 + c2
)

+
b

1− a

∣∣∣∣
thus,

s3m = s0 +
m−1∑
k=0

(−1)3k ln

∣∣∣∣ak(c1 + c2
)

+
b

1− a

∣∣∣∣ , m = 1, 2, 3, ... (3.34)

We also have

s4 = s1 + f(1)

s7 = s4 + f(4) = s1 + f(1) + f(4)

s10 = s7 + f(7) = s1 + f(1) + f(4) + f(7)

s13 = s10 + f(10) = s1 + f(1) + f(4) + f(7) + f(10)

so, for n = 3m+ 1, m = 1, 2, 3, ...

sn = s1 + f(1) + f(4) + f(7) + f(10) + ...+ f(n− 3)

= s1 +

n−4
3∑

k=0

f(3k + 1)
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hence

s3m+1 = s1 +
m−1∑
k=0

f(3k + 1)

but

f(3k + 1) = (−1)3k+1 ln

∣∣∣∣a 3k+1
3

(
c1 + c2 cos

2(3k + 1)π

3
+ c3 sin

2(3k + 1)π

3

)
+

b

1− a

∣∣∣∣
= (−1)3k+1 ln

∣∣∣∣ak+ 1
3

(
c1 + c2 cos

2π

3
+ c3 sin

2π

3

)
+

b

1− a

∣∣∣∣
= (−1)3k+1 ln

∣∣∣∣∣ak+ 1
3

(
c1 +

1

2
c2 −

√
3

2
c3
)

+
b

1− a

∣∣∣∣∣
Thus,

s3m+1 = s1 +
m−1∑
k=0

(−1)3k+1 ln

∣∣∣∣∣ak+ 1
3

(
c1 +

1

2
c2 −

√
3

2
c3
)

+
b

1− a

∣∣∣∣∣ , m = 1, 2, 3, ..

(3.35)
And finally

s5 = s2 + f(2)

s8 = s5 + f(5) = s2 + f(2) + f(5)

s11 = s8 + f(8) = s2 + f(2) + f(5) + f(8)

s14 = s11 + f(11) = s2 + f(2) + f(5) + f(8) + f(11)

so, for n = 3m+ 2, m = 1, 2, 3, ...

sn = s2 + f(2) + f(5) + f(8) + f(11) + ...+ f(n− 3)

= s2 +

n−5
3∑

k=0

f(3k + 2)

hence,

s3m+2 = s2 +
m−1∑
k=0

f(3k + 2)
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but

f(3k + 2) = (−1)3k+2 ln

∣∣∣∣a 3k+2
3

(
c1 + c2 cos

2(3k + 2)π

3
+ c3 sin

2(3k + 2)π

3

)
+

b

1− a

∣∣∣∣
= (−1)3k+2 ln

∣∣∣∣ak+ 2
3

(
c1 + c2 cos

4π

3
+ c3 sin

4π

3

)
+

b

1− a

∣∣∣∣
= (−1)3k+2 ln

∣∣∣∣∣ak+ 2
3

(
c1 −

1

2
c2 −

√
3

2
c3
)

+
b

1− a

∣∣∣∣∣
thus,

s3m+2 = s2+
m−1∑
k=0

(−1)3k+2 ln

∣∣∣∣∣ak+ 2
3

(
c1 −

1

2
c2 −

√
3

2
c3
)

+
b

1− a

∣∣∣∣∣ , m = 1, 2, 3, .. (3.36)

Now, from (3.34,3.35,3.36), we obtain

s3m+l = sl +
m−1∑
k=0

(−1)3k+l ln

∣∣∣∣ak+ l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

∣∣∣∣ , l = 1, 2, 3.

The canonical coordinate

s3m+l = (−1)3m+l ln |u3m+l| , l = 0, 1, 2 m = 1, 2, 3, ...

which implies

u3m+l = exp
(
(−1)3m+ls3m+l

)
= exp

(
(−1)3m+lsl +

m−1∑
k=0

(−1)3k+l+3m+l ln

∣∣∣∣ak+ l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

∣∣∣∣ )

= exp

(
(−1)3m+l(−1)l ln |ul|+

m−1∑
k=0

(−1)3k+3m ln

∣∣∣∣ak+ l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

∣∣∣∣ )

= exp

(
(−1)3m+2l ln |ul|+

m−1∑
k=0

ln

∣∣∣∣ak+ l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

∣∣∣∣(−1)3k+3m )

= u
(−1)3m
l

m−1∏
k=0

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3k+3m

(3.37)
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To verify our computations, we want to show that solution (3.37) verify equation (3.27),
which can be written as

un
un+6

= a+ bun+3un

The left hand side

un
un+6

=
u3m+l

u3(m+2)+l

=
u
(−1)3m
l

∏m−1
k=0

(
ak+

l
3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ b

1−a

)(−1)3k+3m

u
(−1)3(m+2)

l

∏m+1
k=0

(
ak+

l
3

[
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

]
+ b

1−a

)(−1)3k+3(m+2)

=
u
(−1)3m
l

∏m−1
k=0

(
ak+

l
3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ b

1−a

)(−1)3k+3m

u
(−1)3m
l

∏m−1
k=0

(
ak+

l
3

[
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

]
+ b

1−a

)(−1)3k+3m

· 1(
am+ l

3

[
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

]
+ b

1−a

)(−1)3m+3m

· 1(
am+1+ l

3

[
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

]
+ b

1−a

)(−1)3(m+1)+3m

=

(
am+1+ l

3

[
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

]
+ b

1−a

)(
am+ l

3

[
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

]
+ b

1−a

)
Now, a+ bun+3un
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un+3un = u3(m+1)+lu3m+l

= u
(−1)3(m+1)

l

m∏
k=0

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3k+3(m+1)

· u(−1)
3m

l

m−1∏
k=0

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3k+3m

= u
(−1)3m+1

l u
(−1)3m
l

m−1∏
k=0

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3k+3m+1

(
am+ l

3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3m+3m+1

m−1∏
k=0

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3k+3m

=

(
am+ l

3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)−1
so

a+ bun+3un = a+
b(

am+ l
3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ b

1−a

)
=

am+1+ l
3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ ab

1−a + b

am+ l
3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ b

1−a

=
am+1+ l

3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ b

1−a

am+ l
3

(
c1 + c2 cos 2lπ

3
+ c3 sin 2lπ

3

)
+ b

1−a

Now, to determine the forbidden set from (3.37), n = 3m+ l , l = 0, 1, 2

un = u3m+l = u
(−1)3m+l

l

m−1∏
k=0

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3(k+m)

let

fl(m, k) =

(
ak+

l
3

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3

)
+

b

1− a

)(−1)3(k+m)
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then

fl(m, k) =

(
ak+

l
3

3

[
1

u0u3
+

1

u1u4

(
− a−

1
3

)
+

1

u2u5

(
a−

2
3

)
− b

1− a

(
1− a−

1
3 + a−

2
3

)]
+
ak+

l
3

3

[
2

u0u3
+

1

u1u4

(
− a−

1
3

)
+

1

u2u5

(
− a−

2
3

)
− b

1− a

(
2− a−

1
3 − a−

2
3

)]
cos

2lπ

3

+
ak+

l
3

√
3

[
1

u1u4

(
a−

1
3

)
+

1

u2u5

(
− a−

2
3

)
− b

1− a

(
a−

1
3 − a−

2
3

)]
sin

2lπ

3

)
+

b

1− a

)(−1)3k+3m

=

(
1

u0u3

[
ak+

l
3

3
+

2ak+
l
3

3
cos

2lπ

3

]
+

1

u1u4

[
ak+

l
3

3

(
− a−

1
3

)
+
ak+

l
3

3

(
− a−

1
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
a−

1
3

)
sin

2lπ

3

]
+

1

u2u5

[
ak+

l
3

3

(
− a

2
3

)
+
ak+

l
3

3

(
− a−

2
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
− a−

2
3

)
sin

2lπ

3

]
− b

1− a

[(
1− a−

1
3 + a−

2
3

)
+
(
2− a−

1
3 − a−

2
3

)
cos

2lπ

3

+
(
a−

1
3 − a−

2
3

)
sin

2lπ

3
− 1

])(−1)3k+3m

(3.38)
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=

(
u1u2u4u5(1− a)

u0u1u2u3u4u5(1− a)

[
ak+

l
3

3
+

2ak+
l
3

3
cos

2lπ

3

]
+

u0u2u3u5(1− a)

u0u1u2u3u4u5(1− a)

[
ak+

l
3

3

(
− a−

1
3

)
+
ak+

l
3

3

(
− a−

1
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
a−

1
3

)
sin

2lπ

3

]
+

u0u1u3u4(1− a)

u0u1u2u3u4u5(1− a)

[
ak+

l
3

3

(
− a

2
3

)
+
ak+

l
3

3

(
− a−

2
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
− a−

2
3

)
sin

2lπ

3

]
− u0u1u2u3u4u5b

u0u1u2u3u4u5(1− a)

·
[(

1− a−
1
3 + a−

2
3

)
+
(
2− a−

1
3 − a−

2
3

)
cos

2lπ

3

+
(
a−

1
3 − a−

2
3

)
sin

2lπ

3
− 1

])(−1)3k+3m

(3.39)

Now, we have the following results

1. if k + m = even number for some m and k, from (3.39) we we have fl(m, k) is
defined for all

u0u1u2u3u4u5 6= 0

2. if k+m = odd number for some m and k, from (3.38) we have fl(m, k) is undefined
when

0 =

(
1

u0u3

[
ak+

l
3

3
+

2ak+
l
3

3
cos

2lπ

3

]
+

1

u1u4

[
ak+

l
3

3

(
− a−

1
3

)
+
ak+

1
3

3

(
− a−

1
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
a−

1
3

)
sin

2lπ

3

]
+

1

u2u5

[
ak+

l
3

3

(
− a

2
3

)
+
ak+

l
3

3

(
− a−

2
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
− a−

2
3

)
sin

2lπ

3

]
− b

1− a

[(
1− a−

1
3 + a−

2
3

)
+
(
2− a−

1
3 − a−

2
3

)
cos

2lπ

3
+
(
a−

1
3 − a−

2
3

)
sin

2lπ

3
− 1

])
=

1

u0u3
ξl1k +

1

u1u4
ξl2k +

1

u2u5
ξl3k −

b

1− a
ξl4
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where, for l = 0, 1, 2

ξl1k =

[
ak+

l
3

3
+

2ak+
l
3

3
cos

2lπ

3

]
ξl2k =

[
ak+

l
3

3

(
− a−

1
3

)
+
ak+

l
3

3

(
− a−

1
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
a−

1
3

)
sin

2lπ

3

]
ξl3k =

[
ak+

l
3

3

(
− a

2
3

)
+
ak+

l
3

3

(
− a−

2
3

)
cos

2lπ

3
+
ak+

l
3

√
3

(
− a−

2
3

)
sin

2lπ

3

]
ξl4 =

[(
1− a−

1
3 + a−

2
3

)
+
(
2− a−

1
3 − a−

2
3

)
cos

2lπ

3
+
(
a−

1
3 − a−

2
3

)
sin

2lπ

3
− 1

]

Theorem 3.4.1. Let u0, u1, u2, u3, u4, u5 ∈ R such that u0u1u2u3u4u5 6= 0 and let
a 6= 1. Then the forbidden set F of the difference equation (3.27) is given by F =
F0
⋃
F1
⋃
F2, where

F l =
∞⋃
k=1

{
1

u0u3
ξl1k +

1

u1u4
ξl2k +

1

u2u5
ξl3k −

b

1− a
ξl4 = 0

}

3.4.2 The Case a = 1

We consider the case a = 1. Equation (3.32) becomes

zn+3 − zn = b (3.40)

the characteristic roots of the homogeneous equation, zn+3 − zn = 0, are the roots of
the characteristic equation

λ3 − 1 = 0

so
(λ− 1)(λ2 + λ+ 1) = 0

and so

λ1 = 1, λ2,3 =
−1±

√
3i

2
.

Hence, the homogeneous solution zh is

zh = c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3
,
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let the particular solution be
zp = nc,

substitute into (3.40), we obtain

(n+ 3)c− nc = b

so

c =
b

3
then

zp =
b

3
n

thus, the solution of equation (3.40) is

zn = zh + zp

= c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3
+
n

3
b.

Given initial values z0, z1, z2, the constants c1, c2, c3 satisfy the following system of
equations

z0 = c1 + c2

z1 −
b

3
= c1 −

1

2
c2 +

√
3

2
c3

z1 −
2b

3
= c1 −

1

2
c2 −

√
3

2
c3

solving the last system for c1, c2, c3, we get

c1 =
1

3
(z0 + z1 + z2 − b) =

1

3

( 1

u0u3
+

1

u1u4
+

1

u2u5
− b
)

c2 =
1

3
(2z0 − z1 − z2 + b) =

1

3

(
2

1

u0u3
− 1

u1u4
− 1

u2u5
+ b
)

c3 =
1√
3

(z1 − z2 +
b

3
) =

1√
3

( 1

u1u4
− 1

u2u5
+
b

3

)
The invariant vn is given by

vn =
1

zn

=
1

c1 + c2 cos 2nπ
3

+ c3 sin 2nπ
3

+ n
3
b

= unun+3
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so

un+3 =
1

un
(
c1 + c2 cos 2nπ

3
+ c3 sin 2nπ

3
+ n

3
b
) .

To solve the last equation we use the canonical coordinate,

sn =

∫
dun

(−1)nun

= (−1)n ln |un|
so

sn+3 − sn = (−1)n+3 ln |un+3| − (−1)n ln |un|
= (−1)n+1[ln |un+3|+ ln |un|]
= (−1)n+1 ln |un+3un|
= (−1)n+1 ln |vn|

= (−1)n+1 ln

∣∣∣∣ 1

c1 + c2 cos 2nπ
3

+ c3 sin 2nπ
3

+ n
3
b

∣∣∣∣
= (−1)n+2 ln

∣∣∣∣c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3
+
n

3
b

∣∣∣∣
and so

sn+3 − sn = (−1)n ln

∣∣∣∣c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3
+
n

3
b

∣∣∣∣
let

f(n) = (−1)n ln

∣∣∣∣c1 + c2 cos
2nπ

3
+ c3 sin

2nπ

3
+
n

3
b

∣∣∣∣ ,
then

sn+3 − sn = f(n)

which is a third order non homogeneous difference equation that can be solved recur-
sively as in the previous case when a 6= 1. Let s0, s1 and s2 be given, then

s3m+l = sl+
m−1∑
k=0

(−1)3k+l ln

∣∣∣∣c1 + c2 cos
2lπ

3
+ c3 sin

2lπ

3
+
l

3
b

∣∣∣∣ , l = 0, 1, 2, m = 1, 2, 3, ...

The canonical coordinate

s3m+l = (−1)3m+l ln |u3m+l| , l = 0, 1, 2 m = 1, 2, 3, ...
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which implies

u3m+l = exp
(
(−1)3m+ls3m+l

)
= u

(−1)3m
l

m−1∏
k=0

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3
+
l

3
b

)(−1)3k+3m

(3.41)

Now, to determine the forbidden set. From (3.41), n = 3m+ l, l = 0, 1, 2

un = u3m+l = u
(−1)3m
l

m−1∏
k=0

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3
+
l

3
b

)(−1)3k+3m

let

fl(m, k) =

(
c1 + c2 cos

2lπ

3
+ c3 sin

2lπ

3
+
l

3
b

)(−1)3k+3m

then

fl(m, k) =

(
1

u0u3

[
1

3
+

2

3
cos

2lπ

3

]
+

1

u1u4

[
1

3
− 1

3
cos

2lπ

3
+

1√
3

sin
2lπ

3

]
+

1

u2u5

[
1

3
− 1

3
cos

2lπ

3
− 1√

3
sin

2lπ

3

]
− b

3

[
1− cos

2lπ

3
− 1√

3
sin

2lπ

3
− l
])(−1)3k+3m

(3.42)

=

(
3u1u2u4u5

3u0u1u2u3u4u5

[
1

3
+

2

3
cos

2lπ

3

]
+

3u0u2u3u5
3u0u1u2u3u4u5

[
1

3
− 1

3
cos

2lπ

3
+

1√
3

sin
2lπ

3

]
+

3u0u1u3u4
3u0u1u2u3u4u5

[
1

3
− 1

3
cos

2lπ

3
− 1√

3
sin

2lπ

3

]
− bu0u1u2u3u4u5

3u0u1u2u3u4u5u6

[
1− cos

2lπ

3
− 1√

3
sin

2lπ

3
− l
])(−1)3(k+m)

(3.43)

Now,

1. if k+m = even number for some m and k, from (3.43) we have fl(m, k) is defined
where

u0u1u2u3u4u5 6= 0
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2. if k+m = odd number for some m and k, from (3.42) we have fl(m, k) is undefined
when

0 =

(
1

u0u3

[
1

3
+

2

3
cos

2lπ

3

]
+

1

u1u4

[
1

3
− 1

3
cos

2lπ

3
+

1√
3

sin
2lπ

3

]
+

1

u2u5

[
1

3
− 1

3
cos

2lπ

3
− 1√

3
sin

2lπ

3

]
− b

3

[
1− cos

2lπ

3
− 1√

3
sin

2lπ

3
− l
])

=
1

u0u3
ξl1 +

1

u1u4
ξl2 +

1

u2u5
ξl3 −

b

3
ξl4

where

ξl1 =

[
1

3
+

2

3
cos

2lπ

3

]
ξl2 =

[
1

3
− 1

3
cos

2lπ

3
+

1√
3

sin
2lπ

3

]
ξl3 =

[
1

3
− 1

3
cos

2lπ

3
− 1√

3
sin

2lπ

3

]
ξl4 =

[
1− cos

2lπ

3
− 1√

3
sin

2lπ

3
− l
]
.

We get the following theorem

Theorem 3.4.2. Let u0, u1, u2, u3, u4, u5 ∈ R such that u0u1u2u3u4u5 6= 0 and let a = 1.
Then the forbidden set F of the difference equation (3.27) is given by F = F0

⋃
F1
⋃
F2

where

F l =

{
1

u0u3
ξl1 +

1

u1u4
ξl2 +

1

u2u5
ξl3 −

b

3
ξl4 = 0

}



CONCLUSION

By the method of symmetry, we have solved the difference equation

un+2(i+1) =
un

a+ bun+i+1un
,

when i is Even, that is an open problem proposed in [3]. We have determined the
forbidden set of this difference equation. We also have considered the special case i = 0
and the special case i = 2.
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